
Snorocket 2.0: Concrete Domains and
Concurrent Classification

Alejandro Metke-Jimenez and Michael Lawley

The Australian e-Health Research Centre
ICT Centre, CSIRO

Brisbane, Queensland, Australia
{alejandro.metke,michael.lawley}@csiro.au

http://aehrc.com

Abstract. Snorocket is a high-performance ontology reasoner that sup-
ports a subset of the OWL EL profile. In the newest version, additional
expressive power has been added to support concrete domains, enabling
the classification of ontologies that use these constructs. Also, the rea-
soning algorithm has been modified to support concurrent classification.
This feature is important because it enables the use of the full processing
power available in modern multi-processor hardware.

Keywords: ontology, classification, concrete domains, concurrent

1 Introduction

This paper presents Snorocket 2.0, a high-performance ontology reasoner based
on the CEL algorithm [6]. Snorocket was the first reasoner to provide ultra-
fast classification of SNOMED CT and support incremental classification [1].
The initial version is used in the IHTSDO workbench to support SNOMED CT
authoring and it is designed to work with a small heap footprint∗. Snorocket 2.0
is now an open source project available at GitHub†.

Some biomedical ontologies, such as SNOMED CT, have been built using
a subset of the OWL EL profile. Even though most of their content can be
correctly modelled using this subset, some concepts cannot be fully modelled
without concrete domains. For example, it is not possible to fully represent a
“Hydrochlorothiazide 50mg tablet” without using a data literal to represent the
quantity of the active ingredient. To overcome this limitation AMT v3, an ex-
tension of SNOMED CT used in Australia to model medicines, has recently
introduced concrete domains. This has motivated the inclusion of concrete do-
mains into the subset of constructs supported by Snorocket.

The development of extensions to SNOMED CT also means that ontology
reasoners should be able to support classification of larger ontologies. This has
motivated the implementation of a concurrent classification algorithm that al-
lows using the extra processing power available in multi-processor machines.

∗This was required to support 32-bit JVMs running on Windows machines.
†https://github.com/aehrc/snorocket



2

2 Background

The initial version of Snorocket was developed to support the fast classification
of SNOMED CT and therefore only included support for a limited number of
constructs. A table comparing the OWL EL constructs supported by Snorocket
and other EL reasoners is available on the Snorocket website‡.

Concrete domains are supported by several general tableaux-based reasoners
such as FaCT++ [8] and HermiT [9]. The only specialised EL reasoner that
currently supports concrete domains is ELK [4].

Concrete domains are used in AMT mainly to model quantities in the def-
inition of medicines. An OWL version of AMT v3 can be obtained by using
an updated version of the Perl script originally included in the SNOMED CT
distribution. An example of a typical axiom found in AMT is available on the
Snorocket website§.

Most of the commonly used reasoners, including FACT++ [8], HermiT [9],
CEL [6], and jCEL [7] are only capable of using a single processor. To our
knowledge, the only reasoner that has successfully implemented a concurrent
classification algorithm is ELK [4]. Because most modern hardware achieves
better performance by providing more than one processor or core, it is important
to be able to make use of this extra processing power.

3 Architecture

Figure 1 shows a high-level architecture diagram of Snorocket 2.0. The public
Snorocket API, shown inside the snorocket-core module, enables third party
applications to use the reasoner. The API uses a simple model to represent
ontologies. This model is vastly simpler than other publicly available ontology
models, such as OWL API, and excludes all the constructs not currently sup-
ported. This simplifies the usage of the public API. A more detailed description
of this model is available on the Snorocket website¶. All external formats, such
as OWL, RF1, and RF2, are transformed to and from this model. Additional
ontology formats can be supported by adding new importer-exporter modules.

The Snorocket API defines an interface, IReasoner, to perform several rea-
soning functions. The reasoner interface defined by OWL API, OWLReasoner, is
also implemented in the snorocket-owlapi module. Applications that want to
use the reasoner can use either one. SNOMED CT-specific applications can use
the RF1 and RF2 importer-exporter components to generate the axioms in our
simple ontology format from the distribution files. It is also possible to create
these axioms programatically. OWL ontologies are imported using OWL API
and transformed into our simple model using the OWL importer-exporter com-
ponent. A plugin for Protégé is also available in the snorocket-protege module.

‡http://aehrc.com/software/snorocket/index.html#constructs
§http://aehrc.com/software/snorocket/index.html#amtv3
¶http://aehrc.com/software/snorocket/index.html#model



3

Snorocket 2.0 

ontology-import 

RF1 Importer 
Exporter 

RF2 Importer 
Exporter 

OWL Importer 
Exporter 

snorocket-protege 

Protégé 

snorocket-core 

Other 3rd 
Party 

Applications 

Snorocket 
API 

ontology-model 

uses 

Internal 
Model 

uses 

snorocket-owlapi 

SNOMED CT 
Applications 

Fig. 1. Snorocket 2.0 architecture. The labels in bold refer to Maven modules.

4 Implementation

The current implementation of Snorocket is targeted at supporting the OWL
EL profile. It is implemented using Java and built using Maven. The following
sections describe the implementation details of the new features.

4.1 Concrete domains

In description logics a concrete domain is a construct that can be used to define
new classes by specifying restrictions on attributes that have literal values (as
opposed to relationships to other concepts). For example, children of age six can
be defined by using the concrete domain expression ∃hasAge.(=, 6). The class
of individuals, in this case children of age six, is expressed as a restriction on the
age attribute, which has a numeric value. The binary operators <,<=, >,>=
can also be used in a concrete domain expression, and attributes can have other
types of literal values such as floating point numbers, string literals, and dates.

Support for equality An ontology can contain many complex axioms that in-
clude nested sub-expressions. The CEL algorithm works with normalised axioms
and therefore creates a conservative extension of the original ontology containing



4

Table 1. Normal forms and completion rules.

Normal form Completion rules

A1 uA2 v B R1 If A1, A2 ∈ S(X), A1 uA2 v B ∈ O, and B 6∈ S(X)
then S(X) := S(X) ∪ {B}

A v ∃r.B R2 If A ∈ S(X), A v ∃r.B ∈ O, and (X,B) 6∈ R(r)
then R(r) := R(r) ∪ {(X,B)}

∃r.A v B R3 If (X,Y ) ∈ R(r), A ∈ S(Y ), ∃r.A v B ∈ O, and B 6∈ S(X)
then S(X) := S(X) ∪ {B}

r v s R4 If (X,Y ) ∈ R(r), r v s ∈ O, and (X,Y ) 6∈ R(s)
then R(s) := R(s) ∪ {(X,Y )}

r ◦ s v t R5 If (X,Y ) ∈ R(r), (Y,Z) ∈ R(s), r ◦ s v t ∈ O, and (X,Z) 6∈ R(t)
then R(t) := R(t) ∪ {(X,Z)}

A v ∃f.(o, v) R6 If A ∈ S(X), A v ∃f.(o1, v1) ∈ O, ∃f.(o2, v2) v B ∈ O,
∃f.(o, v) v B eval(o1, v1, o2, v2) = true, and B 6∈ S(X)

then S(X) := S(X) ∪ {B}

only axioms in normal form [2]. The normal forms and the corresponding com-
pletion rules R1 to R5 from the original CEL algorithm are shown in Table 1.
The last two normal forms and completion rule R6 have been added to support
concrete domains.

The normalised forms of concrete domain expressions are A v ∃f.(o, v) and
∃f.(o, v) v A, where f represents a feature, o an operator, and v a value. The
original normalisation algorithm requires only minor changes to deal with these
new constructs.

The classification algorithm does require significant changes to deal with the
new concrete domain axioms. A new type of queue is introduced to deal with the
queue entries of the form A v ∃f.(o, v) and it is initialised with these axioms.
The entries are then processed in the following way:

1. The axioms of the form ∃f.(o, v) v B that match the feature f of the data
type in the queue entry are retrieved.

2. The data types are then compared using the eval() function.
3. If only the equality operator needs to be supported then the two data types

are considered to be matching if their literal value is equal.

Support for other operators It is known that supporting arbitrary combi-
nations of different operators leads to intractability [3]. In this implementation
no checks are made to ensure that the ontology being classified complies with
the restrictions that guarantee tractability. If non-compliant axioms are found
then the reasoning procedure will be sound but possibly incomplete.

Adding support for other operators requires a modification to the eval() func-
tion that compares the data types when evaluating feature queue entries. The
different combinations of operators and values have to be evaluated to determine
if there is a match or not.

For example, consider the following axioms:



5

toddler ≡ person u ∃hasAge.(≤, 3)
child ≡ person u ∃hasAge.(≤, 17)

After the normalisation process these axioms are transformed into the fol-
lowing:

∃hasAge.(≤, 17) v A person uA v child
child v person child v ∃hasAge.(≤, 17)
∃hasAge.(≤, 3) v B person uB v toddler
toddler v person toddler v ∃hasAge.(≤, 3)

These axioms allow us to infer that a toddler is also a child (but a child
is not necessarily a toddler). This conclusion is derived when evaluating the
expressions toddler v ∃hasAge.(≤, 3) and ∃hasAge.(≤, 17) v A. The eval()
function in this case takes the arguments (≤, 3,≤, 17) and returns a positive
match because all the possible values of the first operator-value pair are covered
by the possible values of the second operator-value pair. Whenever this is not the
case the function returns false. Notice that this happens in some cases regardless
of the literal values. For example, assuming we are dealing with integer values,
eval(x,<, y >) and eval(x,>, y,<) will always return false because no matter
what values are assigned to x and y, the second operator-value pair will never
be able to cover all the possible values expressed by the first pair.

4.2 Concurrent classification

This new version of Snorocket implements a multi-threaded saturation algorithm
inspired by the algorithm used by ELK. The main idea of the algorithm is to split
the computation into contexts that can be processed by workers independently
while generating minimal locking overhead. Details of the original algorithm
can be found in [5]. The main techniques in the algorithm can be applied in a
straightforward manner to the CEL algorithm implemented by Snorocket.

5 Experimental results

Protégé was used to compare the performance of Snorocket against four other
ontology reasoners: FaCT++, HermiT, jCel, and ELK. The previous version
of Snorocket was also included. Two OWL ontologies were used in the tests:
SNOMED CT and AMT v3. Both of these were derived from the RF2 distribu-
tion files using the corresponding Perl scripts.

The experiments were run in a computer equipped with a 3.3 GHz Intel
i5 processor with 4 cores, 8 GB of physical memory, and running Windows 7.
Protégé was run with Java 7 and a heap size of 4 GB. All the experiments use
elapsed time as an indicator and use the external timing reported by Protégé.
The multi-threaded reasoners (ELK 0.32 and Snorocket 2.0.1) were run using 4
threads.

Table 2 shows the profiles of the selected ontologies and Table 3 shows the
classification times, in seconds, achieved by the reasoners, averaged over 5 runs.



6

Table 2. Profiles of the test ontologies.

#Classes #Object #Data #Axioms
Properties Properties

Ontology Original Normalised

SNOMED CT 296518 62 0 660610 1169913
AMT 61059 78 4 150750 561331

Table 3. Average classification times in seconds using various reasoners in Protégé on
Windows averaged over 5 runs. mem indicates an OutOfMemory error.

SNOMED CT AMT

FACT++ 1.6.2 330 4220
HermiT 1.3.7 1567.3 mem

jCel 0.15‡ 761 -
ELK 0.32 9.1 10.5
Snorocket 1.3.4 33.8 -
Snorocket 2.0.1 26 26.2

The results show that the performance of the tableaux-based reasoners was very
poor when classifying AMT. On the other hand, the specialised EL reasoners
were able to classify it in a fraction of the time. ELK currently provides the best
performance, which is expected since Snorocket’s multi-threaded implementation
is based on the same techniques but has not been optimised. Also, Snorocket only
runs the saturation phase concurrently, while the rest of the steps are still run
sequentially.

6 Conclusions and future work

This paper presented Snorocket 2.0 and compared it against its previous version
and four other reasoners using two large medical ontologies. Even though ELK
obtained the fastest results, Snorocket 2.0 achieved competitive performance.
Snorocket’s built-in support for SNOMED CT distribution formats makes it an
interesting alternative to ELK for SNOMED CT-centric applications.

Future work will include adding multi-threading to the whole classification
process and incorporating the restrictions necessary to ensure tractability when
dealing with concrete domains, either as a hard restriction or as a warning to
the user.

‡The current version of the jCel plugin is 0.18.2 but version 0.15 was the most
recent one that was compatible with our testing environment.



7

References

1. Lawley, M. J., Bousquet, C.: Fast classification in Protégé: Snorocket as an OWL 2
EL reasoner. In: Proc. 6th Australasian Ontology Workshop (IAOA10). Conferences
in Research and Practice in Information Technology, pp. 45–49. (2010)

2. Baader, F., Brandt, S., Lutz, C.: Pushing the EL envelope. In: International Joint
Conference on Artificial Intelligence, p. 364 (2005)

3. Magka, D., Kazakov, Y., Horrocks, I.: Tractable Extensions of the Description Logic
EL with Numerical Datatypes. In: Proc. of the Int. Joint Conf. on Automated
Reasoning (IJCAR 2010). LNAI, vol. 6173, pp. 61–75. Springer (2010)

4. Kazakov, Y., Krötzsch, M., Simančk, F.: ELK Reasoner: Architecture and Evalua-
tion. In: Proceedings of the 1st International Workshop on OWL Reasoner Evalua-
tion, CEUR Workshop Proceedings, (2012)

5. Kazakov, Y., Kötzsch, M., Simančk, F.: Concurrent Classification of EL+ Ontolo-
gies. In: The Semantic Web ISWC 2011, pp. 305–320 (2011)

6. Baader, F., Lutz, C., Suntisrivaraporn, B.: Efficient reasoning in EL+. In: Proceed-
ings of DL 2006, p.189 (2006)

7. Mendez, J. jcel: A Modular Rule-based Reasoner. In: Proc. of the 1st Int. Workshop
on OWL Reasoner Evaluation (ORE12), pp. 130-135 (2012)

8. Tsarkov, D., Horrocks, I.: FaCT++ description logic reasoner: System description.
In: Proc. 3rd Int. Joint Conf. on Automated Reasoning (IJCAR 2006). LNCS, vol.
4130, pp. 292-297. Springer (2006)

9. Motik, B., Shearer, R., Horrocks, I.: HermiT: Hypertableau Reasoning for Descrip-
tion Logics. Journal of Artificial Intelligence Research 36, pp. 165–228 (2009)

10. Sirin, E., Parsia, B., Grau, B.C., Kalyanpur, A., Katz, Y.: Pellet: A practical
OWL-DL reasoner. J. of Web Semantics 5(2), pp. 51-53 (2007)


