
YARR!: Yet Another Rewriting Reasoner

Joerg Schoenfisch and Jens Ortmann

Softplant GmbH, Agnes-Pockels-Bogen 1, 80992 Munich, Germany
{joerg.schoenfisch, jens.ortmann}@softplant.de

Abstract. In this paper we present our implementation of an OWL2QL
reasoner using query rewriting to answer SPARQL queries in a relational
database. To answer queries in the database through rewriting, ontolo-
gies are limited to the OWL2QL profile. The rewriting algorithm inter-
nally produces a non-recursive Datalog program from the given SPARQL
query. This program is then translated to SQL and executed by the
database.

Keywords: reasoning, query rewriting, Presto, OWL2QL

1 Introduction

In this paper we present YARR, our implementation of a reasoner using query
rewriting which is part of the Living Semantic Platform [10]. The platform con-
sists of a relational database as storage for ontologies, an importer for OWL2QL1

and RDF2 data, a web-based GUI to edit the knowledge base, and our reasoner.
YARR exposes a SPARQL3 endpoint and answers queries through the database.

To enable processing of semantic queries by a relational database some re-
strictions apply and several steps are performed. The ontologies stored in the
database are limited to the expressiveness of the OWL2QL profile which is
specifically designed to facilitate query answering through query rewriting and
processing in a relational database.

Query rewriting is employed to retrieve complete and sound answers from the
database. The rewriting which incorporates knowledge from the TBox into the
query to also enable extraction of implicit knowledge from the ABox takes place
in three steps. First, the SPARQL query is parsed and translated to Datalog.
Second, this query is then rewritten into a non-recursive Datalog program to
include the knowledge from the TBox. Third, the program is translated to SQL
and executed in the database system.

YARR fully supports ontologies formulated in OWL2QL and most of the
SPARQL1.1 SELECT syntax. Some built-ins and complex mathematical ex-
pressions in FILTER and ORDER BY clauses still have to be implemented.
Furthermore, there is no reasoning on datatypes.

1 http://www.w3.org/TR/owl2-profiles/
2 http://www.w3.org/TR/rdf-primer/
3 http://www.w3.org/TR/sparql11-overview/



II

2 Related Work

The OWL2QL profile is based on the description logic DL-Lite [1]. Calvanese et
al. [1] proposed PerfectRef as one of the first rewriting algorithms. A second, pop-
ular rewriting algorithm is REQUIEM [6], of which an optimized version called
Blackout [7] is used in Stardog4. Pérez-Urbina et al. also provide an overview
over other rewriting algorithms, for instance Nyaya [5], Clipper [4], Rapid [3],
Presto [9] and Prexto [8].

YARR is based on the Presto algorithm, which produces a non-recursive
Datalog program.

3 Query Rewriting

Query rewriting is the process of transforming a query over a knowledge base in
such a way that it produces sound and complete answers without the need for
any reasoning in the knowledge base itself. In the case of OWL2QL and similar
description logics this means that the query is expanded with knowledge from
the TBox so that implicit knowledge can be extracted from the ABox without
the need for any information about the ABox itself. This is achieved by limiting
the expressiveness of the description logic. A thorough overview is given in the
description of the DL-Lite family by Calvanese et al. [2].

An opposing approach to this is materialization. Here, all knowledge that can
be inferred from known facts is explicitly stored when the data is loaded. Thus,
no reasoning is needed later on, as long as the data is not modified. If the data
is modified the materialization has to be computed anew which can be quite
expensive, e.g. when removing a subclass-of relation, the class assertion with the
super class has to be removed from every single instance of the subclass.

There are three reasons why we chose query rewriting in our implementation.
First, rewriting allows the query to be processed by regular RDBMS, which
are readily available in enterprise environments and require well-known effort
concerning administration, maintenance, backup, etc.

The omission of a reasoning step in the ABox during query answering is the
second point in favor of query rewriting. This way, changes in the ABox, which
might happen quite frequently due to the collaborative setting in which we want
to deploy YARR, can directly be reflected in the answers to a query.

Third, in an ontology-based data access scenario it is often not feasible or
possible to modify or expand the ABox due to its size or missing write permis-
sions.

Presto rewrites a Datalog query in three major steps. The first step splits
each Datalog rule into its independent join components. This produces more,
smaller Datalog rules, resulting in smaller rewritings in the end. This is beneficial
as every Datalog rule is later translated to SQL and must be processed by the
RDBMS. Thus, smaller rewritings positively affect the speed of query answering.

4 http://stardog.com/



III

The second step removes redundant rules. These rules would produce answers
other rules already did, so there is no need to rewrite, translate and execute
them. An example would be two rules, one asking for all individuals, and the
other asking for individuals of a specific type. The individuals of a specific type
are already included in all individuals, and thus the specific rule is superfluous.

The last step defines TBox views for each concept and role, e.g. a view for a
concept would be the union of all individuals directly of this type or of the type
of one of its subclasses.

As an example, the simple SPARQL query that selects all triples is translated
to a single Datalog rule with one atom, and results in an SQL query consisting
of a union over 3 sub-selects with 3 joins each. If the rewriting step is left out,
the size of the SQL grows linearly with the number of triple patterns in the
SPARQL query.

4 Architecture

The two major parts of YARR’s architecture are on the one hand the steps
and libraries involved to transform and rewrite a query from SPARQL to the
corresponding SQL, and the database architecture on the other hand.

Other parts include the import and export functionality for which we utilize
the OWL API5 to parse and write OWL documents, and consistency checking
which is currently transferred to Jena6. Jena is the only reasoner freely available
for commercial use. However, it does not officially support OWL2 as of yet and
its performance is behind that of other reasoners like Pellet or HermiT.

4.1 Rewriting Architecture

The rewriting takes place in several steps, along which our architecture is split.
We try to use existing libraries as much as possible for the steps not directly
related to the rewriting.

The first step is the parsing of the SPARQL query and its translation to our
internal Datalog model. We are using the parser implementation of Sesame7.
Their parser produces an abstract model of the query which we translate to
Datalog rules. The rules incorporate some additional information, e.g. aggre-
gate functions or mathematical expressions for FILTER clauses, which are not
directly represented in Datalog.

These rules are then passed on to the Presto algorithm, which is a straightfor-
ward implementation of the rewriting procedure described by Rosati et al. [9].
The resulting Datalog program includes all the knowledge needed to produce
sound and complete answers to the query.

The process is finished after the final translation from Datalog to SQL. To
gain some syntax and type checking, and to be as agnostic to the underlying

5 http://owlapi.sourceforge.net/
6 http://jena.apache.org/
7 http://www.openrdf.org/



IV

database systems as possible, we us jOOQ8, a domain specific language for SQL
in Java. Each rule of the Datalog program is translated to an SQL query. The
queries are then aggregated into a single query as subqueries. This SQL query
can then be passed to the database to retrieve the answers.

4.2 Database Design

Our database design is loosely based on the way in which facts are stated in
OWL. Overall, it consists of 22 tables. There are individual tables for each type
of assertions, for subclass and subproperty axioms, disjointness and equivalency
axioms, range and domain axioms, literals, and one table for all types of entities
(classes, properties, and individuals).

Another quite obvious choice would have been a design which follows the
structure of RDF. There would have been one (or to optimize for performance
several partitioned) table(s) storing only triples. In fact, this is the layout several
triple stores, like Sesame, Jena, or OWLIM, chose. However, as our reasoner is
part of a platform that focuses on OWL semantics and also offers an editor,
historization, and versioning, we opted for the initially more complex layout to
ease these other tasks.

5 Expected Performance

We conducted a benchmark to compare YARR to state-of-the-art triple stores.
As benchmark we chose SP2Bench9 and various sizes of the data. The other
stores we used for comparison are OWLIM-Lite 5.210 and Stardog 1.0.7 Com-
munity Edition. OWLIM uses a materialization approach, which means all in-
ferences are computed and stored before a query is processed. Stardog uses a
query rewriting algorithm similar to our approach.

Figures 1 and 2 show a comparison to OWLIM and Stardog for different sizes
of SP2Bench (10k, 250k, and 5M triples). This benchmark was run on a desktop
machine with a Intel Core 2 Duo at 3 GHz and 8GB RAM. As database backend
for YARR we used Oracle 11g Express Edition11. Note that to make for a fair
comparison the times include the time needed to send the results to the client.

Most of the time that YARR needs for query answering is spent by the
RDBMS for query planning, processing and result serialization. The overhead
of the rewriting step, and the translation from SPARQL to Datalog and SQL is
negligible for larger datasets and complex queries (well below 50ms).

The diagram clearly shows that our implementation behaves similarly in
terms of scalability as OWLIM and Stardog. We have some disadvantages for
very fast queries due to the rewriting step and the translation to SQL, and the
round-trip to the database (Queries 1, 12c). Although the database is hosted on

8 http://www.jooq.org/
9 http://dbis.informatik.uni-freiburg.de/index.php?project=SP2B

10 http://www.ontotext.com/owlim
11 http://www.oracle.com/technetwork/products/express-edition/overview/



V

1 2 3a 3b 3c 4 5a 5b 6

10k LSP 0,0167 0,8453 0,0383 0,0157 0,0140 37,8023 0,1647 1,1867 0,2933

10k OWLIM 0,0010 0,0067 0,0047 0,0020 0,0020 15,3383 2,5103 0,3570 4,4750

10k Stardog 0,0210 0,0370 0,0233 0,0200 0,0160 0,1137 0,1723 0,0267 0,0557

250K LSP 0,0313 2,6503 0,3000 0,0310 0,0317 1800,0000 1,2663 2,9617 2,2693

250k OWLIM 0,0013 0,2200 0,0417 0,0260 0,0260 1800,0000 1800,0000 360,8620 1800,0000

250k Stardog 0,0167 0,1630 1,7893 0,0193 0,0237 1,7873 203,2773 0,3327 20,0597

5M LSP 0,3380 78,3443 5,2533 0,3317 0,3733 1800,0000 26,6530 40,6263 64,5100

5M OWLIM 0,0140 9,6743 0,5257 0,3077 0,3097 1800,0000 1800,0000 1800,0000 1800,0000

5m Stardog 0,0277 35,1750 3,9043 0,0217 0,0183 117,5650 1800,0000 7,2007 1617,1033

0,0001

0,0010

0,0100

0,1000

1,0000

10,0000

100,0000

1000,0000

10000,0000

s
e
c

Fig. 1. Benchmark SP2Bench Queries 1 - 6

7 8 9 10 11 12a 12b 12c

10k LSP 0,4143 36,9597 0,5450 0,0067 0,0147 0,0863 35,9443 0,0027

10k OWLIM 3,8273 0,0093 0,0357 0,0003 0,0137 0,3727 0,0033 0,0003

10k Stardog 0,0233 0,0927 0,0193 0,0167 0,0203 0,4457 0,1103 0,0100

250K LSP 0,5723 21,6380 1,5933 0,0170 0,0957 0,3947 21,7037 0,0027

250k OWLIM 1800,0000 0,0773 0,9390 0,0007 0,3207 302,2110 0,0703 0,0003

250k Stardog 0,0833 0,4183 0,0613 0,0057 0,0503 204,4030 0,5690 0,0123

5M LSP 41,4237 533,6507 43,1820 0,1153 1,5877 4,7917 427,6407 0,0030

5M OWLIM 1800,0000 1,1983 45,1623 0,0010 7,5273 1800,0000 1,1003 0,0003

5m Stardog 0,5690 0,6397 1,4493 0,0213 0,8983 1800,0000 0,9240 0,0133

0,0001

0,0010

0,0100

0,1000

1,0000

10,0000

100,0000

1000,0000

10000,0000

s
e
c

Fig. 2. Benchmark SP2Bench Queries 7 - 12



VI

the same machine it is running in a different process outside the JVM and has
to be accessed over the network which is considerably slower than to access a
database in the same process.

However, more importantly, we are on par with OWLIM’s performance for
some queries on the larger datasets (Queries 3b, 3c, 9) and sometimes consider-
ably faster (Queries 5a, 5b, 6, 7, 11, 12a). For six of these OWLIM is not able
to complete the request within the 30 minutes timeout that SP2Bench imposes
on reasoners, whereas this only happens for one query in YARR (Query 4).

The comparison to Stardog shows similar results. The overall impression is
that Stardog performs slightly better than the other two. It is especially fast on
query 4, where it is the only reasoner without a timeout, and queries 7 and 9,
but also seems to have some penalty if the result of the query can be computed
very fast (Queries 1, 10, 12c).

Further investigation is needed to determine the source for YARRs slow per-
formance on the remaining queries (Queries 2, 3a, 8, 10, 12b). Possible reasons
are bad query plans, missing indexes, or queries inherently hard for relational
database systems.

We also did benchmarks for different database backends, i.e. Oracle, Post-
gres12, HSQLDB13 and H214. Oracle and Postgres showed comparable perfor-
mance for all benchmarks. The tests on HSQLDB and H2 were only done in-
memory and for small datasets, so the performance values we have for those are
not conclusive, yet. However, it was quite surprising that for some queries, H2
was not able to find a query plan for the SQL and did not produce any results.

6 Future Work and Conclusion

We presented our implementation of an OWL2QL reasoner using the Presto
algorithm to answer SPARQL queries in a relational database. The first bench-
marks we conducted to compare it to state-of-the-art triple stores are promising.
We still have planned further optimization but we already expect our reasoner
to compete well with other implementations.

Our future work is focused on a more thorough support of SPARQL1.1,
mainly for SELECT, ASK and CONSTRUCT queries. Built-ins defined by the
recommendation will also be implemented as the need for them arises.

Furthermore, we have planned several optimizations, e.g. caching of TBox
statistics to reduce the size of the SQL queries or to improve the join order.

In a wider perspective there is ongoing work to implement adapters for
ontology-based data access (OBDA) to support arbitrary database schemes. One
possibility herein is the use of R2RML15, which provides a mapping language
from relational schemas to RDF.

12 http://www.postgresql.org/
13 http://hsqldb.org/
14 http://www.h2database.com/html/main.html
15 http://www.w3.org/TR/r2rml/



VII

References

1. Diego Calvanese, Giuseppe De Giacomo, Domenico Lembo, Maurizio Lenzerini,
and Riccardo Rosati. Dl-lite: Tractable description logics for ontologies. In Pro-
ceedings of the National Conference on Artificial Intelligence, volume 20, page 602.
Menlo Park, CA; Cambridge, MA; London; AAAI Press; MIT Press; 1999, 2005.

2. Diego Calvanese, Giuseppe De Giacomo, Domenico Lembo, Maurizio Lenzerini,
and Riccardo Rosati. Tractable reasoning and efficient query answering in descrip-
tion logics: The dl-lite family. Journal of Automated reasoning, 39(3):385–429,
2007.

3. Alexandros Chortaras, Despoina Trivela, and Giorgos Stamou. Optimized query
rewriting for owl 2 ql. In Automated Deduction–CADE-23, pages 192–206. Springer,
2011.

4. Thomas Eiter, Magdalena Ortiz, M Simkus, Trung-Kien Tran, and Guohui Xiao.
Towards practical query answering for horn-shiq. Description Logics, 846, 2012.

5. Georg Gottlob, Giorgio Orsi, and Andreas Pieris. Ontological queries: Rewriting
and optimization. In Data Engineering (ICDE), 2011 IEEE 27th International
Conference on, pages 2–13. IEEE, 2011.

6. Héctor Pérez-Urbina, Boris Motik, and Ian Horrocks. Tractable query answer-
ing and rewriting under description logic constraints. Journal of Applied Logic,
8(2):186–209, 2010.

7. Héctor Pérez-Urbina, Edgar Rodrıguez-Dıaz, Michael Grove, George Konstantini-
dis, and Evren Sirin. Evaluation of query rewriting approaches for owl 2. In Joint
Workshop on Scalable and High-Performance Semantic Web Systems (SSWS+
HPCSW 2012), page 32, 2012.

8. Riccardo Rosati. Query rewriting under extensional constraints in dl-lite. In Pro-
ceedings of the international workshop on description logics, DL-2012, 2012.

9. Riccardo Rosati and Alessandro Almatelli. Improving query answering over dl-lite
ontologies. Proc. of KR, 2010, 2010.

10. Joerg Schoenfisch, Florian Lautenbacher, Julian Lambertz, and Willy
Chen. Living Semantic Platform. 10th International Semantic
Web Conference - Industry Track, 25 October 2011. Available at
http://www.softplant.de/innovation/konferenzteilnahmen.html.


