
Verification of Inconsistency-Aware
Knowledge and Action Bases?

Diego Calvanese1, Evgeny Kharlamov2, Marco Montali1, Ario Santoso1, and
Dmitriy Zheleznyakov2

1 Free University of Bozen-Bolzano, Bolzano, Italy
lastname@inf.unibz.it

2 University of Oxford, Oxford, UK
firstname.lastname@cs.ox.ac.uk

Abstract. Description Logic Knowledge and Action Bases (KABs) have been re-
cently introduced as a mechanism to evolve a DL KB over time by means of actions
that may acquire new information from the external environment. Decidability
of verification in KABs has been studied for properties expressed in first-order
variants of µ-calculus, under a natural assumption of “run-boundedness”. However,
the established framework treats inconsistency in a simplistic way, by rejecting
inconsistent states produced through action execution. We overcome this limitation
by adopting in the application of actions inconsistency-aware semantics based on
the notion of repair. We establish decidability and complexity of verification in
this extended framework.

1 Introduction

Recent work in knowledge representation and databases has addressed the problem
of dealing with the combination of knowledge, processes and data in the design of
complex enterprise systems [11,21,1,8,17]. The verification of temporal properties in
this setting represents a significant research challenge, since data and knowledge makes
the system infinite-state, and neither finite-state model checking [10] nor most of the
current techniques for infinite-state model checking [4] apply to this case.

Along this line, Knowledge and Action Bases (KABs) [1] have been recently intro-
duced as a mechanism that provides a semantically rich representation of the information
on the domain of interest in terms of a Description Logic (DL) KB and a set of actions
to change such information over time, possibly introducing new objects. In this setting,
decidability of verification of sophisticated temporal properties over KABs, expressed in
a variant of first-order µ-calculus, has been shown.

However, KABs and the majority of approaches dealing with verification in this
complex setting assume a rather simple treatment of inconsistency resulting as an effect
of action execution: inconsistent states are simply rejected (see, e.g., [12,11,2]). In
general, this is not satisfactory, since the inconsistency may affect just a small portion of
the entire KB, and should be treated in a more careful way. Notice also that actions could

? This work has been partially supported by the EU projects ACSI (FP7-ICT-257593) and Optique
(FP7-IP-318338).

2 Diego Calvanese et al.

cause an inconsistency only under specific conditions on the data, while otherwise being
consistently applicable. Hence, elimination of an action is in general not an acceptable
option. Starting from this observation, in this work we leverage on the research on
instance-level evolution of knowledge bases [22,13,15,9], and, in particular, on the
notion of knowledge base repair [16], in order to make KABs inconsistency-aware. In
particular, we present a novel setting that extends KABs by assuming the availability of
a repair service that is able to compute, from an inconsistent knowledge base resulting
from the execution of an action, one or more repairs, in which the inconsistency has
been removed with a “minimal” modification to the existing knowledge. This allows
us to incorporate, in the temporal verification formalism, the possibility of quantifying
over repairs. Notably, our novel setting is able to deal with both deterministic semantics
for repair, in which a single repair is computed from an inconsistent knowledge base,
and non-deterministic ones, by simultaneously taking into account all possible repairs.
We show how the techniques developed for KABs extend to this inconsistency-aware
setting, preserving both decidability and complexity results, under the same assumptions
required in KABs for decidability.

We also show how our setting is able to accommodate meta-level information about
the sources of inconsistency at the intentional level, so as to allow them to be queried
when verifying temporal properties of the system. The decidability and complexity
results for verification carry over to this extended setting as well.

2 Preliminaries

DL-LiteA Knowledge Bases. For expressing knowledge bases, we use DL-LiteA [19,5].
The syntax of concept and role expressions in DL-LiteA is as follows

B −→ N | ∃R R −→ P | P−

where N denotes a concept name, P a role name, and P− an inverse role. A DL-LiteA
knowledge base (KB) is a pair (T,A), where: (i) A is an Abox, i.e., a finite set of ABox
membership assertions of the form N(t1) | P (t1, t2), where t1, t2 denote individuals
(ii) T is a TBox, i.e., T = Tp] Tn] Tf , with Tp a finite set of positive inclusion
assertions of the form B1 v B2, Tn a finite set of negative inclusion assertions of the
form B1 v ¬B2, and Tf a finite set of functionality assertions of the form (funct R).

We adopt the standard FOL semantics of DLs based on FOL interpretations. We also
say that A is T -consistent if (T,A) is satisfiable, i.e., admits at least one model.
Queries. Answers to queries are formed by terms denoting individuals explicitly men-
tioned in the ABox. The domain of an ABox A, denoted by ADOM(A), is the (finite)
set of terms appearing in A. A union of conjunctive queries (UCQ) q over a KB (T,A)
is a FOL formula of the form

∨
1≤i≤n ∃yi.conj i(x,yi) with free variables x and ex-

istentially quantified variables y1, . . . ,yn. Each conj i(x,yi) in q is a conjunction of
atoms of the form N(z), P (z, z′), where N and P respectively denote a concept and a
role name occurring in T , and z, z′ are constants in ADOM(A) or variables in x or yi,
for some i ∈ {1, . . . , n}. The (certain) answers to q over (T,A) is the set ans (q, T,A)
of substitutions σ of the free variables of q with constants in ADOM(A) such that qσ
evaluates to true in every model of (T,A). If q has no free variables, then it is called
boolean and its certain answers are either true or false.

Verification of Inconsistency-Aware Knowledge and Action Bases 3

We compose UCQs using ECQs, i.e., queries of the query language EQL-
Lite(UCQ) [6], which is the FOL query language whose atoms are UCQs evaluated
according to the certain answer semantics above. An ECQ over T and A is a possibly
open formula of the form

Q := [q] | ¬Q | Q1 ∧Q2 | ∃x.Q

where q is a UCQ. The answer to Q over (T,A), is the set ANS(Q,T,A) of tuples of
constants in ADOM(A) defined by composing the certain answers ans (q, T,A) of UCQ
q through first-order constructs, and having existential variables range over ADOM(A).

Finally, we recall that DL-LiteA enjoys the FO rewritability property, which states
that for every UCQ q, ans (q, T,A) = ans (rew(q), ∅, A), where rew(q) is a UCQ
computed by the reformulation algorithm in [5]. Notice that this algorithm can be
extended to ECQs [6], and that its effect is to “compile away” the TBox.

Knowledge and Action Bases. We recall the notion of Knowledge and Action Bases
(KABs), as introduced in [1]. In the following, we make use of a countably infinite set
C of constant to denote all possible value in the system. Moreover, we also make use
of a finite set F of functions that represent service calls, and can be used to inject fresh
values into the system.

A KAB is a tuple K = (T,A0, Γ,Π) where T and A0 form the knowledge base
(KB), and Γ and Π form the action base. Intuitively, the KB maintains the information
of interest. It is formed by a fixed DL-LiteA TBox T and an initial T -consistent DL-
LiteA ABox A0. A0 represents the initial state of the system and, differently from T , it
evolves and incorporates new information from the external world by executing actions
Γ , according to the sequencing established by process Π . Γ is a finite set of actions.
An action γ ∈ Γ modifies the current ABox A by adding or deleting assertions, thus
generating a new ABoxA′. γ is constituted by a signature and an effect specification. The
action signature is constituted by a name and a list of individual input parameters. Such
parameters need to be instantiated with individuals for the execution of the action. Given
a substitution θ for the input parameters, we denote by γθ the instantiated action with the
actual parameters coming from θ. The effect specification consists of a set {e1, . . . , en}
of effects, which take place simultaneously. An effect ei has the form [q+i] ∧Q

−
i A′i,

where: (i) q+i is an UCQ, and Q−i is an arbitrary ECQ whose free variables occur all
among the free variables of q+i ; (ii) A′i is a set of facts (over the alphabet of T) which
include as terms: individuals in A0, free variables of q+i , and Skolem terms f(x) having
as arguments free variables x of q+i . The process Π is a finite set of condition/action
rules. A condition/action rule π ∈ Π is an expression of the form Q 7→ α, where α is
an action in Γ and Q is an ECQ over T , whose free variables are exactly the parameters
of γ. The rule expresses that, for each tuple σ for which condition Q holds, the action α
with actual parameters σ can be executed.

Example 1. K = (T,A0, Γ,Π) is a KAB defined as follows: (i) T = {C v ¬D},
(ii) A0 = {C(a)}, (iii) Γ = {γ1, γ2} with γ1() : {C(x) D(x), C(x)} and γ2(p) : {C(p)
G(f(p))}, (iv) Π = {true 7→ γ1, C(y) 7→ γ2(y)}.

4 Diego Calvanese et al.

3 Verification of Standard KABs

We are interested in verifying temporal/dynamic properties over KABs. To this aim, we
fix a countably infinite set C of individual constants (also called values), which act as
standard names, and finite set of distinguished constants C0 ⊂ C. Then, we define the
execution semantics of a KAB in terms of a possibly infinite-state transition system.
More specifically, we consider transition systems of the form (C, T,Σ, s0, abox ,⇒),
where: (i) T is a TBox; (ii) Σ is a set of states; (iii) s0 ∈ Σ is the initial state; (iv) abox
is a function that, given a state s ∈ Σ, returns an ABox associated to s, which has as
individuals values of C and conforms to T ; (v) ⇒ ⊆ Σ × Σ is a transition relation
between pairs of states.

The standard execution semantics for a KAB K = (T,A0, Γ,Π) is obtained starting
from A0 by nondeterministically applying every executable action with corresponding
legal parameters, and considering each possible value returned by applying the involved
service calls. Notice that this is radically different from [1], where service calls are not
evaluated when constructing the transition system. The executability of an action with
fixed parameters does not only depend on the process Π , but also on the T -consistency
of the ABox produced by the application of the action: if the resulting ABox is T -
inconsistent, the action is considered as non executable with the chosen parameters.

We consider deterministic services, i.e., services that return always the same value
when called with the same input parameters. Nondeterministic services can be seamlessly
added without affecting our technical results. To ensure that services behave deterministi-
cally, we recast the approach in [2] to the semantic setting of KABs, keeping track, in the
states of the transition system generated by K, of all the service call results accumulated
so far. To do so, we introduce the set of (Skolem terms representing) service calls as
SC = {f(v1, . . . , vn) | f/n ∈ F and {v1, . . . , vn} ⊆ C}, and define a service call map
as a partial function m : SC→ C.

A state of the transition system generated by K is a pair 〈A,m〉, where A is an ABox
and m is a service call map. Let α(p1, . . . , pr) : {e1, . . . , ek} be an action in Γ with
parameters p1, . . . , pr, and ei = [q+i]∧Q

−
i Ei. Let σ be a substitution for p1, . . . , pr

with values taken from C. We say that σ is legal for α in state 〈A,m〉 if there exists a
condition-action rule Q 7→ α in Π such that 〈p1, . . . , pr〉σ ∈ ANS(Q,A). We denote
with DO(T,A, ασ) the set of facts obtained by evaluating the effects of action α with
parameters σ on ABox A, i.e.:

DO(T,A, ασ) =
⋃

[q+i]∧Q−i Ei in α

⋃
ρ∈ANS(([q+i]∧Q−i)σ,T,A)

Eiσρ

The returned set is the union of the results of applying the effects specifications in α,
where the result of each effect specification [q+i] ∧ Q

−
i Ei is, in turn, the set of

facts Eiσρ obtained from Eiσ grounded on all the assignments ρ that satisfy the query
[q+i] ∧Q

−
i over A.

Note that DO() generates facts that use values from the domain C, but also Skolem
terms, which model service calls. For any such set of facts E, we denote with CALLS(E)
the set of calls it contains, and with EVALS(T,A, ασ) the set of substitutions that replace
all service calls in DO(T,A, ασ) with values in C:

EVALS(T,A, ασ) = {θ | θ : CALLS(DO(T,A, ασ))→ C is a total function }.

Verification of Inconsistency-Aware Knowledge and Action Bases 5

Each substitution in EVALS(T,A, ασ) models the simultaneous evaluation of all
service calls, returning results arbitrarily chosen from C.

Example 2. Consider our running example (Example 1). Starting from A0, the execution of γ1
would produce A′ = {D(a), C(a)}, which is T -inconsistent. Thus, the execution of γ1 is not
allowed in A0. The execution of γ2 with legal parameter a instead produces A′′ = {G(c)} when
the service call f(a) returns c. A′′ is T -consistent, and γ2(a) is therefore executable in A0.

Given a KAB K = (T,A0, Γ,Π), we employ DO() and EVALS() to define a tran-
sition relation EXECK connecting two states through the application of an action with
parameter assignment. In particular, given an action with parameter assignment ασ, we
have 〈〈A,m〉, ασ, 〈A′,m′〉〉 ∈ EXECK if the following holds: (i) σ is a legal parameter
assignment for α in state 〈A,m〉, according to Π; (ii) there exists θ ∈ EVALS(T,A, ασ)
such that θ and m agree on the common values in their domains (so as to realize the
deterministic service semantics); (iii) A′ = DO(T,A, ασ)θ; (iv) m′ = m ∪ θ (i.e., the
history of issued service calls is updated).
Standard transition system. The standard transition system Υ S

K for KAB K =
(T,A0, Γ,Π) is a (possibly infinite-state) transition system (C, T,Σ, s0, abox ,⇒)
where: (1) s0 = 〈A0, ∅〉; (2) abox (〈A,m〉) = A; (3) Σ and ⇒ are defined by si-
multaneous induction as the smallest sets satisfying the following properties: (i) s0 ∈ Σ;
(ii) if 〈A,m〉 ∈ Σ , then for all actions α in Γ , for all substitutions σ for the parameters of
α and for all 〈A′,m′〉 such thatA′ is T -consistent and 〈〈A,m〉, ασ, 〈A′,m′〉〉 ∈ EXECK,
we have 〈A′,m′〉 ∈ Σ and 〈A,m〉 ⇒ 〈A′,m′〉. We call S-KAB a KAB interpreted
under the standard execution semantics.

Example 3. Consider K of Example 1 and its standard transition system Υ S
K. As discussed in Ex-

ample 2, in state s0 = 〈A0, ∅〉 only γ2 is applicable with parameter a. Since DO(T,A0, γ2(a)) =
{G(f(a))}, Υ S

K contains infinitely many successors for s0, each of the form 〈{G(x)}, {f(a) 7→
x}〉, where x is arbitrarily substituted with a specific value picked from C.

Verification Formalism. To specify sophisticated temporal properties over KABs, we
resort to the first-order variant of µ-calculus [20,18] defined in [1]. This variant, here
called µLEQL

A , exploits EQL to query the states, and supports a particular form of first-
order quantification across states: quantification ranges over the individuals explicitly
present in the current active domain, and can be arbitrarily referred to in later states of
the systems. Formally, µLEQL

A is defined as follows:
Φ := Q | ¬Φ | Φ1 ∧ Φ2 | ∃x.Φ | 〈−〉Φ | Z | µZ.Φ

whereQ is a possibly open EQL query that can make use of the distinguished constants in
C0, and Z is a second order predicate variable (of arity 0). We make use of the following
abbreviations: ∀x.Φ = ¬(∃x.¬Φ), Φ1 ∨ Φ2 = ¬(¬Φ1 ∧ ¬Φ2), [−]Φ = ¬〈−〉¬Φ, and
νZ.Φ = ¬µZ.¬Φ[Z/¬Z].

The semantics of µLEQL
A formulae is defined over transition systems

〈C, T,Σ, s0, abox ,⇒〉. Since µLEQL
A contains formulae with both individual and pred-

icate free variables, given a transition system Υ, we introduce an individual variable
valuation v, i.e., a mapping from individual variables x to C, and a predicate variable
valuation V , i.e., a mapping from the predicate variables Z to subsets of Σ. All the
language primitives follow the standard µ-calculus semantics, apart from [1]:

(Q)Υv,V = {s ∈ Σ | ANS(Qv, T, abox (s)) = true}
(∃x.Φ)Υv,V = {s ∈ Σ | ∃d.d ∈ ADOM(abox (s)) and s ∈ (Φ)Υv[x/d],V }

6 Diego Calvanese et al.

Here,Qv stands for the query obtained fromQ by substituting its free variables according
to v. When Φ is a closed formula, (Φ)Υv,V does not depend on v or V , and we denote the
extension of Φ simply by (Φ)Υ . A closed formula Φ holds in a state s ∈ Σ if s ∈ (Φ)Υ .
We call model checking verifying whether s0 ∈ (Φ)Υ , and we write in this case Υ |= Φ.

Decidability of verification. We are interested in studying the verification of µLEQL
A

properties over S-KABs. We can easily recast the undecidability result in [1] to the case
of S-KABs, obtaining that verification is undecidable even for the very simple temporal
reachability property µZ.(N(a) ∨ 〈−〉Z), with N atomic concept and a ∈ C.

Despite this undecidability result, we can isolate an interesting class of KABs
that enjoys verifiability of arbitrary µLEQL

A properties through finite-state abstraction.
This class is based on a semantic restriction named run-boundedness [2]. Given an
S-KAB K, a run τ = s0s1 · · · of Υ S

K is bounded if there exists a finite bound b s.t.∣∣⋃
s state of τ ADOM(abox (s))

∣∣ < b. We say that K is run-bounded if there exists a bound
b s.t. every run τ in Υ S

K is bounded by b.

Theorem 1. Verification of µLEQL
A properties over run-bounded S-KABs is decidable,

and can be reduced to finite-state model checking of propositional µ-calculus.

The crux of the proof is to show, given a run-bounded S-KAB K, how to construct
an abstract transition system ΘS

K that satisfies exactly the same µLEQL
A properties as

the original transition system Υ S
K. This is done by introducing a suitable bisimulation

relation, and defining a construction of ΘS
K based on iteratively “pruning” those branches

of Υ S
K that cannot be distinguished by µLEQL

A properties.
In fact, ΘS

K is of size exponential in the size of the initial state of the S-KAB K and
the bound b. Hence, considering the complexity of model checking of µ-calculus on
finite-state transition systems [10,20], we obtain that verification is in EXPTIME.

4 Repair Semantics for KABs

S-KABs are defined by taking a radical approach in the management of inconsistency:
simply reject actions leading to T -inconsistent ABoxes. However, an inconsistency could
be caused by a small portion of the ABox, making it desirable to handle the inconsistency
by allowing the application of the action, taking at the same time care of repairing the
resulting state so as to restore consistency while minimizing the information loss. To this
aim, we revise the standard execution semantics for KABs so as to manage inconsistency.
This is done taking advantage of the research on instance-level evolution of knowledge
bases [22,13,15,9], and, in particular, of the notion of ABox repair, cf. [3,16].

In particular, we assume that in this case the system is equipped with a repair service
that is executed every time an action changes the content of the ABox. In this light,
a progression step of the KAB is constituted by two sub-steps: an action step, where
an executable action with parameters is chosen and applied over the current ABox,
followed by a repair step, where the repair service checks whether the resulting state is
T -consistent or not, and, in the negative case, fixes the content of the ABox resulting
from the action step, by applying its repair strategy.

Verification of Inconsistency-Aware Knowledge and Action Bases 7

Repairing ABoxes. We illustrate our approach by considering two specific forms of
repair that have been proposed in the literature [13] and are applicable to the context of
DL ontologies [16].

– Given an ABox A and a TBox T , a bold-repair (b-repair) of A with T is a maximal
T -consistent subset A′ of A. Clearly, there might be more than one bold-repair for
given A and T . By REP(A, T) we denote the set of all b-repairs of A with T .

– A certain-repair (c-repair) of A with T is the ABox defined as follows: A′ =
∩A′′∈REP(A,T)A

′′. That is, a c-repair of A with T contains only those ABox state-
ments that occur in every b-repair of A with T .

Notice that, in general, there are (exponentially) many b-repairs of an ABox A with T ,
while by definition there is a single c-repair.

Example 4. Continuing Ex. 2, consider the T -inconsistent state 〈A′, ∅〉 obtained by applying
γ1() in A0. Its two b-repairs are REP(A′, T) = {A1, A2} with A1 = {C(a)}, A2 = {D(a)}.
Its c-repair is

⋂
A∈REP(A′,T)A = {C(a)} ∩ {D(a)} = ∅.

4.1 Bold and Certain Repair Transition Systems

We now refine the execution semantics of KABs by constructing a two-layered transition
system reflecting the action and repair step alternation. In particular, we consider the two
repair strategies that follow the bold and certain semantics, respectively.

We observe that, if b-repair semantics is applied, then the repair service has, in
general, several possibilities to fix an inconsistent ABox. Since, a-priori, no information
about the repair service can be assumed beside the repair strategy itself, the transition
system capturing this execution semantics must consider the progression of the system
for any computable repair, modelling the repair step as the result of a non-deterministic
choice taken by the repair service when deciding which among the possible repairs will
be the actually enforced one. This issue does not occur with c-repair semantics, because
its repair strategy is deterministic.

In order to distinguish whether a state is obtained from an action or repair step, we
introduce a special marker State(rep), which is an ABox statement with a fresh concept
name State and a fresh constant rep, s.t.: if State(rep) is in the current state, this means
that the state has been produced by an action step, otherwise by the repair step.

Formally, the b-transition system Υ bK (resp. c-transition system Υ cK) for a KAB
K = (T,A0, Γ,Π) is a (possibly infinite-state) transition system (C, T,Σ, s0, abox ,⇒)
where s0 = 〈A0, ∅〉, and Σ and⇒ are defined by simultaneous induction as the smallest
sets satisfying the following properties:

(i) s0 ∈ Σ;
(ii) (action step) if 〈A,m〉 ∈ Σ and State(rep) 6∈ A, then for all actions α

in Γ , for all substitutions σ for the parameters of α and for all 〈A′,m′〉
s.t. 〈〈A,m〉, ασ, 〈A′,m′〉〉 ∈ EXECK, let A′′ = A′ ∪ {State(rep)}, and then
〈A′′,m′〉 ∈ Σ and 〈A,m〉 ⇒ 〈A′′,m′〉;

(iii) (repair step) if 〈A,m〉 ∈ Σ and State(rep) ∈ A, then for b-repairA′ (resp. c-repair
A′) of A− {State(rep)} with T , we have 〈A′,m〉 ∈ Σ and 〈A,m〉 ⇒ 〈A′,m〉.

We refer to KABs with b-transition (resp. c-transition) system semantics as b-KAB
(resp. c-KAB).

8 Diego Calvanese et al.

Example 5. Under b-repair semantics, the KAB in our running example looks as follows.
Since A′ is T -inconsistent, we have two bold repairs, A1 and A2, which in turn give raise
to two runs: 〈A0, ∅〉 ⇒ 〈A′r, ∅〉 ⇒ 〈A1, ∅〉 and 〈A0, ∅〉 ⇒ 〈A′r, ∅〉 ⇒ 〈A2, ∅〉, where
A′r = {A′ ∪ {STATE(REP)}. Since instead γ1 does not lead to any inconsistency, for ev-
ery candidate successor A′′ = {G(x)} with m = {(f(a) 7→ x)} (see Ex. 3), we we have
〈A0, ∅〉 ⇒ 〈A′′ ∪ {STATE(REP)},m〉 ⇒ 〈A′′,m〉, reflecting that in this case the repair service
just maintains the resulting ABox unaltered.

4.2 Verification Under Repair Semantics

We observe that the alternation between an action and a repair step makes EQL queries
meaningless for the intermediate states produced as a result of action steps, because the
resulting ABox could be in fact T -inconsistent (see, e.g., state 〈A′r, ∅〉 in Ex. 5). In fact,
such intermediate states are needed just to capture the dynamic structure that reflects the
behaviour of the system. E.g., state 〈A′r, ∅〉 in Ex. 5 has two successor states, attesting
that the repair service with bold semantics will produce one between two possible repairs.

In this light, we introduce the inconsistency-tolerant temporal logic µLIT
A , which is

the fragment of µLEQL
A defined as:

Φ := Q | ¬Φ | Φ1 ∧ Φ2 | ∃x.Φ | 〈−〉[−]Φ | [−][−]Φ | Z | µZ.Φ

Beside the standard abbreviations introduced for µLEQL
A , we also make use of the fol-

lowing: 〈−〉〈−〉Φ = ¬[−][−]¬Φ, and [−]〈−〉Φ = ¬〈−〉[−]¬Φ. This logic can be used to
express interesting properties over b- and c-KABs, exploiting different combinations of
the 〈−〉 and [−] next-state operators so as to quantify over the possible action steps and
corresponding repair steps, ensuring at the same time that only the T -consistent states
produced by the repair steps are queried. For example, µZ.(Φ∨〈−〉〈−〉Z) models the “op-
timistic” reachability of Φ, stating that there exists a sequence of action and repair steps,
s.t. Φ eventually holds. Conversely, µZ.(Φ∨〈−〉[−]Z) models the “robust” reachability of
Φ, stating the existence of a sequence of action steps leading to Φ independently from the
behaviour of the repair service. This patterns can be nested into more complex properties
that express requirements about the acceptable progressions of the system, taking into
account data and repairs. E.g., νZ.(∀x.Stud(x)→ µY.(Grad(x) ∨ 〈−〉[−]Y)) ∧ [−][−]Z
states that, for every student x encountered in any state of the system, it is possible to
“robustly” reach a state where x becomes graduated.

Since for a given ABox there exist finitely many b-repairs, and one c-repair, the
technique used to prove decidability of properties for run-bounded S-KABs can be
extended to deal with b- and c-KABs as well.

Theorem 2. Verification of µLIT
A properties over run-bounded b-KABs and c-KABs is

decidable.

5 Extended Repair Semantic for KABs

B-KABs and c-KABs provide an inconsistency-handling semantics to KABs. However,
despite dealing with possible repairs when some action step produces a T -inconsistent

Verification of Inconsistency-Aware Knowledge and Action Bases 9

ABox, they do not explicitly track whether a repair has been actually enforced, nor do
they provide finer-grained insights about which TBox assertions were involved in the
inconsistency. Here we extend the repair execution semantics so as to equip the transition
system with this additional information.

While DL-LiteA does not allow, in general, to uniquely extract from a T -inconsistent
ABox a set of individuals that are responsible for the inconsistency [7], its separability
property [7] guarantees that inconsistency arises because a single negative TBox asser-
tion is violated. More specifically, a T -inconsistency involves the violation of either a
functionality assertion or negative inclusion in T . Since DL-LiteA obeys the restriction
that no functional role can be specialized, the first case can be detected by just consider-
ing the ABox and the functionality assertion alone. Contrariwise, the second requires
also to take into account the positive inclusion assertions (since disjointness propagates
downward to the subclasses). Thanks to the FO rewritability of ontology satisfiability in
DL-LiteA [7], each such check can be done by constructing a FOL boolean query that
corresponds to the considered functional or negative inclusion assertion, and that can be
directly evaluated over the ABox, considered as a database of facts.

Following [7], given a functionality assertion (funct R), we construct the query
qfunsat((functR)) = ∃x, x1, x2.η(R, x, x1)∧η(R, x, x2)∧x1 6= x2, where η(R, x, y) =
P (x, y) if R = P , and η(R, x, y) = P (y, x) if R = P−. Given a negative con-
cept inclusion B1 v ¬B2 and a set of positive inclusions Tp, we construct the query
qnunsat(B1 v ¬B2, Tp) = rew(Tp,∃x.γ(B1, x) ∧ γ(B2, x)), where γ(B, x) = N(x) if
B = N , γ(B, x) = P (x,) if B = ∃P , and γ(B, x) = P (, x) if B = ∃P−. Simi-
larly, given a negative role inclusion R1 v ¬R2, we construct the query qnunsat(R1 v
¬R2, Tp) = rew(Tp,∃x1, x2.η(R1, x1, x2) ∧ η(R2, x1, x2)).

5.1 Extended Repair Transition System

With this machinery at hand, given a KB (T,A) we can now compute the set of TBox
assertions in T that are actually violated byA. To do so, we assume wlog that C0 contains
one distinguished constant per TBox assertion in T , and introduce a function LABEL,
that, given a TBox assertion, returns the corresponding constant. Let ∆ ⊂ C0 be the
set of such constants. We then define the set VIOL(A, T) of constants labeling TBox
assertions in T violated by A, as:

{d ∈ ∆ | ∃t ∈ Tf s.t. d = LABEL(t) and A |= qfunsat(t)} ∪
{d ∈ ∆ | ∃t ∈ Tn s.t. d = LABEL(t) and A |= qnunsat(t, Tp)}

Example 6. ConsiderK in Ex. 1, with T = {C v ¬D}, andA′ = {D(a), C(a)} in Example 2.
Assume that LABEL(C v ¬D) = `. We have φ = qnunsat(C v ¬D, ∅) = ∃x.C(x)∧D(x). Since
A′ |= φ, we obtain VIOL(A′, T) = {`}.

We now employ this information assuming that the repair service decorates the
states it produces with information about which TBox functional and negative inclusion
assertions have been involved in the repair. This is done with a fresh concept Viol that
keeps track of the labels of violated TBox assertions.

Formally, we define the eb-transition system Υ ebK (resp. ec-transition system
Υ ecK) for KAB K = (T,A0, Γ,Π) as a (possibly infinite-state) transition system
(C, T,Σ, s0, abox ,⇒) constructed starting from Υ bK (resp. Υ cK) by refining the repair

10 Diego Calvanese et al.

step as follows: if 〈A,m〉 ∈ Σ and State(rep) ∈ A, then for b-repair A′ (resp. c-repair
A′) of A−{State(rep)} with T , we have 〈A′v,m〉 ∈ Σ and 〈A,m〉 ⇒ 〈A′v,m〉, where
A′v = A′ ∪ {Viol(d) | d ∈ VIOL(A′, T)}.

5.2 Verification Under Extended Repair Semantics
Thanks to the insertion of information about violated TBox assertions in their transition
systems, eb-KABs and ec-KABs support the verification of µLIT

A properties that mix
dynamic requirements with queries over the instance-level information and over the
meta-level information related to inconsistency. Notice that such properties can indirectly
refer to specific TBox assertions, thanks to the fact that their labels belong to the set of
distinguished constants C0. Examples of formulae focused on the presence of violations
in the system are:

– νZ.(¬∃l.Viol(l)) ∧ [−][−]Z says that no state of the system is manipulated by the
repair service;

– νZ.(∀l.Viol(l)→ (µY.νW.¬Viol(l)∧ [−][−]W ∨ 〈−〉[−]Y)∧ [−][−]Z says that, in all
states, whenever a TBox assertion a is violated, independently from the applied
repairs there exists a run that reaches a state starting from which a will never be
violated anymore.

Since the TBox assertions are finitely many and fixed for a given KAB, the key decid-
ability result of Theorem 2 carries over seamlessly to these extended repair semantics.

Theorem 3. Verification of µLIT
A properties over run-bounded eb-KABs and ec-KABs is

decidable.

5.3 From Standard to Extended Repair KABs
It is clear that extended repair KABs are richer than repair KABs. We now show that eb-
and ec-KABs are also richer than S-KABs, thanks to the fact that information about the
violated TBox assertions is explicitly tracked in all states resulting from a repair step.
In particular, verification of µLEQL

A properties over a KAB K under standard semantics
can be recast as a corresponding verification problem over K interpreted either under
extended bold or extended certain repair semantics. The intuition behind the reduction is
that a property holds over Υ sK if that property holds in the portion of the Υ ebK (or Υ ecK)
where no TBox assertion is violated. The absence of violation can be checked over
T -consistent states by issuing the EQL query ¬∃x.[Viol(x)]. Technically, we define a
translation function τ that transforms an arbitrary µLEQL

A property Φ into a µLIT
A property

Φ′ = τ(Φ). The translation τ(Φ) is inductively defined by recurring over the structure of
Φ and substituting each occurrence of 〈−〉Ψ with 〈−〉〈−〉((¬∃x.Viol(x))∧τ(Ψ)), and each
occurrence of [−]Ψ with [−]〈−〉((¬∃x.Viol(x))→ τ(Ψ)). Observe that, in τ , the choice
of 〈−〉 for the nested operator can be substituted by [−], because for T -consistent states
produced by an action step, the repair step simply copy the resulting state, generating a
unique successor even in the eb-semantics.

Theorem 4. Given a KAB K and a µLEQL
A property Φ, Υ sK |= Φ iff Υ ebK |= τ(Φ) iff

Υ ecK |= τ(Φ).

The correctness of this result is obtained by considering the semantics of µLEQL
A and

µLIT
A , and the construction of the transition systems under the three semantics.

Verification of Inconsistency-Aware Knowledge and Action Bases 11

6 Weakly Acyclic KABs

So far, all the decidability results here presented have relied on the assumption that the
considered KAB is run-bounded. As pointed out in [2], run boundedness is a semantic
condition that is undecidable to check. In [2], a sufficient, syntactic condition borrowed
from weak acyclicity in data exchange [14] has been proposed to actually check whether
the KAB under study is run bounded and, in turn, verifiable.

Intuitively, given a KAB K, this test constructs a dependency graph tracking how
the action effect specifications of K transport values from one state to the next one. To
track all the actual dependencies, every involved query is first rewritten considering the
positive inclusion assertions of the TBox. Two types of dependencies are tracked: copy
of values and usage of values as service call parameters. K is said to be weakly acyclic
if there is no cyclic chain of dependencies of the second kind. The presence of such a
cycle could produce an infinite chain of fresh values generation through service calls.

The crux of the proof showing that weakly acyclicity ensures run boundedness
is based on the notion of positive dominant, which creates a simplified version of
the KAB that, from the execution point of view, obeys three key properties. First, its
execution consists of a single run that closely resembles the chase of a set of tuple-
generating dependencies, which terminates under the assumption of weak acyclicity [14],
guaranteeing that the positive dominant is indeed run-bounded. Second, it considers
only the positive inclusion assertions of the TBox, therefore producing always the same
behaviour independently from which execution semantics is chosen, among the ones
discussed in this paper. Third, for every run contained in each of the transition systems
generated under the standard, bold repair, certain repair, and their extended versions, the
values accumulated along the run are “bounded” by the ones contained in the unique
run of the positive dominant. This makes it possible to directly carry run-boundedness
from the positive dominant to the original KAB, independently from which execution
semantics is considered.

Theorem 5. Given a weakly acyclic KAB K, we have that Υ sK, Υ bK, Υ cK, Υ ebK , Υ ecK are all
run-bounded.

Theorem 5 shows that weak acyclicity is an effective method to check verifiability of
KABs under all inconsistency-aware semantics considered in this paper.

7 Conclusion

We have approached the problem of inconsistency handling in Knowledge and Action
Bases, by resorting to an approach based on ABox repairs. An orthogonal approach to
the one taken is to maintain ABoxes that are inconsistent with the TBox as states of
the transition system, and rely, both for the progression mechanism and for answering
queries used in verification, on consistent query answering [3,16]. Notably, we are able
to show that the decidability and complexity results established for the repair-based
approaches carry over also to this setting. It remains open to investigate the relationship
between these orthogonal approaches to dealing with inconsistency in KABs.

12 Diego Calvanese et al.

References

1. Bagheri Hariri, B., Calvanese, D., De Giacomo, G., De Masellis, R., Montali, M., Felli, P.:
Verification of description logic Knowledge and Action Bases. In: Proc. of the 20th Eur. Conf.
on Artificial Intelligence (ECAI 2012). pp. 103–108 (2012)

2. Bagheri Hariri, B., Calvanese, D., De Giacomo, G., Deutsch, A., Montali, M.: Verification
of relational data-centric dynamic systems with external services. CoRR Technical Report
arXiv:1203.0024, arXiv.org e-Print archive (2012), available at http://arxiv.org/
abs/1203.0024

3. Bertossi, L.E.: Consistent query answering in databases. SIGMOD Record 35(2), 68–76
(2006)

4. Burkart, O., Caucal, D., Moller, F., Steffen, B.: Verification of infinite structures. In: Handbook
of Process Algebra. Elsevier Science (2001)

5. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Poggi, A., Rodrı́guez-Muro, M.,
Rosati, R.: Ontologies and databases: The DL-Lite approach. In: Tessaris, S., Franconi, E.
(eds.) Reasoning Web. Semantic Technologies for Informations Systems – 5th Int. Summer
School Tutorial Lectures (RW 2009), Lecture Notes in Computer Science, vol. 5689, pp.
255–356. Springer (2009)

6. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: EQL-Lite: Effective
first-order query processing in description logics. In: Proc. of the 20th Int. Joint Conf. on
Artificial Intelligence (IJCAI 2007). pp. 274–279 (2007)

7. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: Tractable reasoning
and efficient query answering in description logics: The DL-Lite family. J. of Automated
Reasoning 39(3), 385–429 (2007)

8. Calvanese, D., De Giacomo, G., Lembo, D., Montali, M., Santoso, A.: Ontology-based
governance of data-aware processes. In: Proc. of the 6th Int. Conf. on Web Reasoning and
Rule Systems (RR 2012). Lecture Notes in Computer Science, vol. 7497, pp. 25–41. Springer
(2012)

9. Calvanese, D., Kharlamov, E., Nutt, W., Zheleznyakov, D.: Evolution of DL-Lite knowledge
bases. In: Proc. of the 9th Int. Semantic Web Conf. (ISWC 2010). Lecture Notes in Computer
Science, vol. 6496, pp. 112–128. Springer (2010)

10. Clarke, E.M., Grumberg, O., Peled, D.A.: Model checking. The MIT Press, Cambridge, MA,
USA (1999)

11. Deutsch, A., Hull, R., Patrizi, F., Vianu, V.: Automatic verification of data-centric business
processes. In: Proc. of the 12th Int. Conf. on Database Theory (ICDT 2009). pp. 252–267
(2009)

12. Deutsch, A., Sui, L., Vianu, V.: Specification and verification of data-driven web applications.
J. of Computer and System Sciences 73(3), 442–474 (2007)

13. Eiter, T., Gottlob, G.: On the complexity of propositional knowledge base revision, updates
and counterfactuals. Artificial Intelligence 57, 227–270 (1992)

14. Fagin, R., Kolaitis, P.G., Miller, R.J., Popa, L.: Data exchange: Semantics and query answering.
Theoretical Computer Science 336(1), 89–124 (2005)

15. Flouris, G., Manakanatas, D., Kondylakis, H., Plexousakis, D., Antoniou, G.: Ontology
change: Classification and survey. Knowledge Engineering Review 23(2), 117–152 (2008)

16. Lembo, D., Lenzerini, M., Rosati, R., Ruzzi, M., Savo, D.F.: Inconsistency-tolerant semantics
for description logics. In: Proc. of the 4th Int. Conf. on Web Reasoning and Rule Systems
(RR 2010). pp. 103–117 (2010)

17. Limonad, L., De Leenheer, P., Linehan, M., Hull, R., Vaculin, R.: Ontology of dynamic
entities. In: Proc. of the 31st Int. Conf. on Conceptual Modeling (ER 2012) (2012)

18. Park, D.M.R.: Finiteness is Mu-ineffable. Theoretical Computer Science 3(2), 173–181 (1976)

http://arxiv.org/abs/1203.0024
http://arxiv.org/abs/1203.0024

Verification of Inconsistency-Aware Knowledge and Action Bases 13

19. Poggi, A., Lembo, D., Calvanese, D., De Giacomo, G., Lenzerini, M., Rosati, R.: Linking
data to ontologies. J. on Data Semantics X, 133–173 (2008)

20. Stirling, C.: Modal and Temporal Properties of Processes. Springer (2001)
21. Vianu, V.: Automatic verification of database-driven systems: a new frontier. In: Proc. of the

12th Int. Conf. on Database Theory (ICDT 2009). pp. 1–13 (2009)
22. Winslett, M.: Updating Logical Databases. Cambridge University Press (1990)

	Verification of Inconsistency-Aware Knowledge and Action Bases

