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1 Introduction

In ontology-based data access (OBDA) [17], an ontology provides an abstract and for-
mal representation of the domain of interest, which is used as a virtual schema when
formulating queries over the data. Current research in OBDA mostly focuses on ontol-
ogy specification languages for which conjunctive query answering is first-order (FO)
rewritable. In a nutshell, FO-rewritability means that query answering can be performed
by rewriting the input query into a first-order query which encodes the relevant knowl-
edge from the ontology, and then evaluating the resulting query over the data. Among
FO-rewritable ontology languages, description logics (DLs) of the DL-Lite family [8,
2] have played an especially prominent role and notably served as the inspiration for
the OWL 2 QL profile 3 of the latest version of the OWL web ontology language.

In real-world applications involving large amounts of data and/or multiple data
sources, chances are that the data will be inconsistent with the ontology. Standard
OBDA querying algorithms are next to useless in such circumstances, since first-order
logic semantics (upon which DLs and standard ontology languages are based) dictates
that everything can be derived from a contradiction. Appropriate mechanisms for han-
dling inconsistent data are thus critical to the success of OBDA in practice. Clearly, the
best solution is to restore consistency by removing the pieces of data that are responsi-
ble for the inconsistencies. However, this strategy cannot always be applied, since the
system may not have enough information to localize the errors, or may lack the autho-
rization to modify the data (as is often the case in information integration applications).
Thus, a robust OBDA system must be capable of providing meaningful answers to user
queries in the presence of inconsistent data.

Recently, several approaches have pursued the idea of adopting an inconsistency-
tolerant semantics for OBDA, taking inspiration from the work on consistent query an-
swering in databases [1, 4]. The most well-known and intuitive among such semantics,
which we will call the CQA semantics, considers as a repair of a knowledge base (KB)
consisting of an ontology T and a dataset A, a maximal subset of A that is consistent
with T . Query answering under the CQA semantics then amounts to computing those
answers that hold in every repair of the KB. Unfortunately, conjunctive query answer-
ing (as well as simpler forms of reasoning) under CQA semantics is computationally

3 http://www.w3.org/TR/owl2-profiles/



hard, even for extremely simple ontology languages for which reasoning under classical
semantics is tractable [13, 5].

To overcome this computational problem, approximations of the CQA semantics
have been recently proposed. In particular, [13, 14] introduces a sound approximation
(called IAR semantics) that evaluates queries over the intersection of all the repairs of
the CQA semantics. It was shown that conjunctive query answering under this seman-
tics is tractable (in particular, it is first-order rewritable) for logics of the DL-Lite family.
However, the IAR semantics has the drawback that it often constitutes a very rough ap-
proximation of the CQA semantics, and desirable query answers may be missed. In
an effort to obtain more answers than the IAR semantics, a family of parameterized
inconsistency-tolerant semantics, called k-lazy consistent semantics, was proposed in
[15] and shown to converge in the limit to the CQA semantics. However, since the con-
vergence is not monotone in k, these semantics are not sound approximations of the
CQA semantics. Moreover, these semantics do not retain the nice computational prop-
erties of the IAR semantics: the polynomial data complexity result shown for linear
Datalog+/- ontologies only holds for atomic queries, and it follows from results in [5]
that conjunctive query answering under k-lazy consistent semantics is coNP-hard in
data complexity, for every k ≥ 1.

In this paper, we address the above issues and provide the following contributions:
(i) we propose two new families of inconsistency-tolerant semantics, called k-defeater

and k-support semantics, that approximate the CQA semantics from above (complete
approximations) and from below (sound approximations), respectively, and converge to
the CQA semantics in the limit;

(ii) we study the data complexity of conjunctive query answering under the new
semantics, and show a general tractability result for a broad class of ontology languages
that includes all known first-order rewritable languages, in particular almost all DLs of
the DL-Lite family and several rule-based languages of the Datalog+/- family [6];

(iii) we analyze the combined complexity of conjunctive query answering under the
above semantics for ontology languages of the DL-Lite family.

The k-support and k-defeater semantics proposed in this paper provide the basis
for a semantically grounded and computationally tractable approximation of the CQA
semantics in OBDA systems. In particular, we envision a flexible, iterated execution
of query q under both k-support and k-defeater semantics with increasing values of k,
which stops as soon as the answers to q under both semantics coincide, or when the
user is not interested in (or does not want to pay further computational cost for) an
exact classification of the tuples that are answers to q under the CQA semantics.

2 Preliminaries

Ontologies and KBs An ontology T is a finite set of first-order logic sentences, and
an ontology (specification) language L is a (typically infinite) set of first-order logic
sentences. If T ⊆ L, then T is called an L ontology. A knowledge base (KB) is a pair
consisting of an ontology T and a finite set A of ground facts. A KB 〈T ,A〉 is said to
be consistent if the first-order theory T ∪ A has a model. Otherwise, it is inconsistent,
which we denote by 〈T ,A〉 |= ⊥.



We are interested in the problem of answering instance queries and conjunctive
queries over KBs. Without loss of generality, and for ease of exposition, we only con-
sider Boolean queries (i.e. queries without free variables). A first-order (FO) query,
or simply query, is a first-order sentence. An instance query (IQ) is a FO query con-
sisting of a single ground fact. A conjunctive query (CQ) is a FO query of the form
∃x(α1 ∧ . . . ∧ αn) where every αi is an atom whose arguments are either constants or
variables from x. A query q is entailed by a KB K under classical semantics (denoted
by K |= q) if q is satisfied in every model of K. The instance checking problem consists
in deciding, for a KB K and IQ q, whether K |= q. The conjunctive query entailment
problem is defined analogously, but with q a CQ.

We introduce some terminology for referring to sets of facts which are responsible
for inconsistency or query entailment. A set S of ground facts is called T -consistent if
〈T , S〉 6|= ⊥. A minimal T -inconsistent subset ofA is any S ⊆ A such that 〈T , S〉 |= ⊥
and every S′ ( S is T -consistent. A set of facts S ⊆ A is said to be a T -support for
query q in A if S is T -consistent and 〈T , S〉 |= q, and it is called a minimal T -support
for q in A if no proper subset of S is a T -support for q in A. We sometimes omit “for
q” or “in A”, when these are understood.

Given a set of ground facts A, we define IA as the interpretation isomorphic to A,
i.e., the interpretation defined over the domain of constants occurring inA and such that
the interpretation of every relation R in IA is equal to the set {a | R(a) ∈ A}.

DL-Lite ontology languages We focus on DLs of the DL-Lite family [8, 2] and recall
the syntax and semantics of two specific dialects, called DL-Lite4 and DL-LiteHorn . A
DL-Lite ontology consists of a finite set of inclusions B v C, where B and C are
defined according to the following syntax:

B → A | ∃R C → B | ¬B R→ P | P−

with A a concept name (unary relation) and P a role name (binary relation). In a
DL-LiteHorn ontology, inclusions take the form B1 u . . . u Bn v C, with B1, . . . , Bn

and C as above.
The classical semantics of DL-Lite and DL-LiteHorn ontologies is obtained by trans-

lating inclusions into first-order sentences using the following function Φ:

Φ(A(x)) = A(x) Φ(¬B(x)) = ¬Φ(B(x))
Φ(∃P (x)) = ∃y(P (x, y)) Φ(B1 uB2(x)) = Φ(B1(x)) ∧ Φ(B2(x))

Φ(∃P−(x)) = ∃y(P (y, x)) Φ(C v D) = ∀x(Φ(C(x))→ Φ(D(x))

The classical semantics of a DL-LiteHorn KB 〈T ,A〉 (and in particular, the notions of
model, consistency, and entailment) corresponds to the semantics of the first-order KB
〈Φ(T ),A〉. Note that when considering DL KBs, we assume as is standard that the
dataset A uses only unary and binary relations.

First-order rewritability We say that an ontology T is first-order (FO) rewritable
(for CQ answering) under semantics S if, for every CQ q, there exists an effectively
computable FO query q′ such that, for every set of ground facts A, 〈T ,A〉 entails q

4 This DL is referred to as DL-Litecore in [8, 2].



under semantics S iff q′ is satisfied in IA (in the classical sense). Such a query q′ is
called a FO-rewriting of q relative to T under semantics S. Moreover, we say that an
ontology language L is FO-rewritable (for CQ answering) under semantics S if, for
every ontology T ⊆ L, T is FO-rewritable for CQ answering under S.

Complexity There are two common ways of measuring the complexity of query entail-
ment. The first, called combined complexity, is with respect to the size of the whole input
(T ,A, q), whereas the second, called data complexity, is only with respect to the size
ofA. Our complexity results utilize standard complexity classes, such as NLSPACE, P,
NP, and coNP. We also require the following classes which may be less well-known:
AC0 (problems which can be solved by a family of circuits of constant depth and poly-
nomial size, with unlimited fan-in AND gates and OR gates), Πp

2 (problems whose
complement is solvable in non-deterministic polynomial time with access to an NP or-
acle), and ∆p

2[O(log n)] (problems which are solvable in polynomial time with at most
logarithmically many calls to an NP oracle).

3 Inconsistency-tolerant Semantics

In this section, we formally introduce the consistent query answering (CQA) semantics
and other relevant inconsistency-tolerant semantics. All of the semantics considered in
this paper rely on the notion of a repair, defined as follows:

Definition 1. A repair of a KB K = 〈T ,A〉 is an inclusion-maximal subset of A that is
T -consistent. We use Rep(K) to denote the set of repairs of K.

The repairs of a KB correspond to the different ways of achieving consistency while
retaining as much of the original data as possible. Hence, if we consider that the data is
mostly reliable, then it is reasonable to assume that one of the repairs accurately reflects
the correct portion of the data.

The consistent query answering semantics (also known as the AR semantics [13])
is based upon the idea that, in the absence of further information, a query can be con-
sidered to hold if it can be inferred from each of the repairs. Formally:

Definition 2. A query q is entailed by a KB K = 〈T ,A〉 under the consistent query
answering (CQA) semantics, written 〈T ,A〉 |=CQA q, if 〈T ,B〉 |= q for every repair
B ∈ Rep(K).

Example 1. Consider the DL-Lite ontology Tuniv:

Prof v Faculty Lect v Faculty Fellow v Faculty Prof v ¬Lect Prof v ¬Fellow
Lect v ¬Fellow Prof v ∃teaches Lect v ∃teaches ∃teaches− v ¬Faculty

which states that professors, lecturers, and research fellows are disjoint classes of fac-
ulty, that professors and lecturers must teach something, and that whatever is taught is
not faculty. Now let Asam be as follows: {Prof(sam), Lect(sam),Fellow(sam)}. It is
easy to see that KB 〈Tuniv,Asam〉 is inconsistent and has 3 repairs:R1 = {Prof(sam)},
R2 = {Lect(sam)} and R3 = {Fellow(sam)}. Observe that from each of the re-
pairs, we can infer q1 = Faculty(sam), so 〈Tuniv,Asam〉 |=CQA q1. However, q2 =



∃x.Faculty(sam) ∧ teaches(sam, x) is not entailed from 〈Tuniv,R3〉, so we have that
〈Tuniv,Asam〉 6|=CQA q2.

Unfortunately, while the CQA semantics is intuitively appealing, it is well-known
that answering queries under this semantics is usually intractable w.r.t. data complexity
[13, 5]. This stems from the fact that the number of repairs of 〈T ,A〉may be exponential
in the size of A, even when T is formulated in extremely simple ontology languages.

To overcome the computational problems of the CQA semantics, a sound approxi-
mation of it, called the IAR semantics, was proposed in [13].

Definition 3. A query q is entailed by a KB K = 〈T ,A〉 under the IAR semantics,
written 〈T ,A〉 |=IAR q, if 〈T ,D〉 |= q where D =

⋂
B∈Rep(K) B.

The IAR semantics is more conservative than the CQA semantics, as it only uses
those facts which are not involved in any contradiction. This has the advantage of yield-
ing query results which are almost surely correct, but also the drawback that some
plausible inferences may be missed, as demonstrated by the following example.

Example 2. Reconsider the KB 〈Tuniv,Asam〉 and CQ q1 from Example 1. The intersec-
tion of the repairsR1 ∩R2 ∩R3 is the empty set, so 〈Tuniv,Asam〉 6|=IAR q1, despite the
fact that all the information in Asam supports q1 being true.

From the computational perspective, the IAR semantics can be much better-behaved
than the CQA semantics. Indeed, it was shown in [14] that DL-LiteA is FO-rewritable
for CQ answering under the IAR semantics, and this result was recently extended to
linear Datalog +/- ontologies [16].

Finally, to obtain a natural overapproximation of the CQA semantics, we introduce
its brave version.

Definition 4. A query q is entailed by a KB K = 〈T ,A〉 under the brave semantics,
written 〈T ,A〉 |=brave q, if 〈T ,B〉 |= q for some repair B ∈ Rep(K).

Example 3. As q2 is entailed by 〈Tuniv,R1〉, we have 〈Tuniv,Asam〉 |=brave q2. Also note
that every fact inAsam appear in some repair, hence, all facts inAsam are entailed under
the brave semantics.

As Example 3 demonstrates, the brave semantics has the undesirable feature of
allowing contradictory statements to be entailed. Nonetheless, this semantics can still
serve a useful role by providing a means of showing that a query is not entailed under
the CQA semantics.

4 Approximations of the CQA Semantics

In this section, we propose two new families of inconsistency-tolerant semantics, which
provide increasingly fine-grained under- and over-approximations of the CQA seman-
tics. As these semantics will be shown in Section 5 to enjoy the same nice computational
properties as the IAR semantics, our new approach allows us to marry the advantages
of the IAR and CQA semantics.



We begin by presenting our new family of sound approximations of the CQA se-
mantics. The intuition is as follows: if a query q is entailed under the CQA semantics,
then this is because there is a set {S1, . . . , Sn} of T -supports for q such that every re-
pair contains some Si. The k-support semantics we propose is obtained by allowing a
maximum of k different supports to be used.

Definition 5. A query q is entailed by K = 〈T ,A〉 under the k-support semantics,
written K |=k-supp q, if there exist (not necessarily distinct) subsets S1, . . . , Sk of A
satisfying the following conditions:

– each Si is a T -support for q in A
– for every R ∈ Rep(K), there is some Si with Si ⊆ R

Example 4. The three repairs of 〈Tuniv,Asam〉 all use different supports for q1. We thus
have 〈Tuniv,Asam〉 |=3-supp q1, but 〈Tuniv,Asam〉 6|=2-supp q1.

The following theorem resumes the important properties of the family of k-support
semantics, showing that they interpolate between the IAR and CQA semantics.

Theorem 1. Let K = 〈T ,A〉 be a KB and q a query. Then:
1. K |=IAR q if and only if K |=1-supp q
2. K |=CQA q if and only if K |=k-supp q for some k
3. for every k ≥ 0, if K |=k-supp q, then K |=k+1-supp q

The k-support semantics allows us to approximate more and more closely the set of
queries entailed under the CQA semantics, but provides no way of showing that a par-
ticular query is not entailed under this semantics. This motivates the study of complete
approximations of the CQA semantics.

The observation underlying our new family of complete approximations is the fol-
lowing: if a query q is not entailed under the CQA semantics, this is because there is
a T -consistent set of facts which contradicts all of the T -supports of q. The k-defeater
semantics corresponds to there being no way to construct such a “defeating” set using
at most k facts.

Definition 6. A query q is entailed by K = 〈T ,A〉 under the k-defeater semantics,
written K |=k-def q, if there does not exist a T -consistent subset S of A with |S| ≤ k
such that 〈T , S ∪ C〉 |= ⊥ for every minimal T -support C ⊆ A of q.

Note that if q has no T -support, then it is not entailed under 0-defeater semantics
since one can simply take S = ∅.

Example 5. We have 〈Tuniv,Asam〉 6|=1-def q2, since by choosing S = {Fellow(sam)},
we can invalidate the minimal T -supports of q2, which are {Prof(sam)} and {Lect(sam)}.

The next theorem shows that the family of k-defeater semantics provides increas-
ingly closer over-approximations of the CQA semantics, starting from the brave seman-
tics presented in Section 3.

Theorem 2. Let K = 〈T ,A〉 be a KB and q a query. Then:
1. K |=brave q if and only if K |=0-def q
2. K |=CQA q if and only if K |=k-def q for every k
3. for every k ≥ 1, if K |=k+1-def q, then K |=k-def q



5 Data Complexity

In this section, we study the data complexity of conjunctive query answering under the
k-support and k-defeater semantics. Our main result is the following theorem which
shows that, for a broad class of ontology languages, conjunctive query answering un-
der these semantics can be done using FO-rewriting, and hence is in AC0 w.r.t. data
complexity.

Theorem 3. Let T be an ontology that is FO-rewritable for CQ answering under clas-
sical semantics and such that for every CQ q, there exist `,m such that for every A,
every minimal T -support for q relative to A has cardinality at most `, and every mini-
mal T -inconsistent subset of A has cardinality at most m. Then:
(i) for every k ≥ 1, T is FO-rewritable for conjunctive query answering under the

k-support semantics;
(ii) for every k ≥ 0, T is FO-rewritable for conjunctive query answering under the

k-defeater semantics.

Proof (sketch). Let T be as stated, and let q be a CQ. By assumption, we can find ` and
m such that for every A, the minimal T -supports for q relative to A have cardinality
at most `, and the minimal T -inconsistent subsets of A have cardinality bounded by
m. For point (i), a FO-rewriting of q relative to T for the k-support semantics can be
obtained by considering the first-order query ϕq = q1 ∨ . . . ∨ qn, where the disjuncts
qi correspond to the different possible choices of k T -supports for q of cardinality at
most `, and each qi asserts that the chosen supports are present in A and that there is
no T -consistent subset of A of cardinality at most km which conflicts with each of the
supports. For point (ii), the desired FO-rewriting of q takes the form ¬(q1 ∨ . . . ∨ qn),
where every qi asserts the existence of a T -consistent set of facts of cardinality at most
k which conflicts with every minimal T -support for q. Here we again utilize the fact
that the size of minimal T -supports is bounded by `, and hence there are only finitely
many types of supports to consider.

Theorem 3 significantly strengthens earlier positive results for the IAR semantics
[14, 15] by covering a full range of semantics and an entire class of practically rele-
vant ontology languages. Indeed, it is easy to verify that all ontology languages that
are currently known to be first-order rewritable under classical semantics satisfy the hy-
potheses of Theorem 3: that is, all logics of the original DL-Lite family [8] and almost
all members of the extended DL-Lite family [2], as well as all dialects of Datalog+/-
that are known to be FO-rewritable under classical semantics [7].

The following examples illustrate the construction of FO-rewritings for the k-support
and k-defeater semantics.

Example 6. We consider how to rewrite the CQ q1 under the k-support semantics.
When k = 1, we can take as our FO-rewriting the disjunction of the formulas:

Faculty(sam) ∧ ¬∃x teaches(x, sam)

Prof(sam) ∧ ¬∃x teaches(x, sam) ∧ ¬Lect(sam) ∧ ¬Fellow(sam)

Lect(sam) ∧ ¬∃x teaches(x, sam) ∧ ¬Prof(sam) ∧ ¬Fellow(sam)

Fellow(sam) ∧ ¬∃x teaches(x, sam) ∧ ¬Lect(sam) ∧ ¬Prof(sam)



Note that each disjunct expresses that one of the four possible T -supports is present and
is not contradicted by other facts. To obtain the rewriting for k = 2, we must introduce
additional disjuncts which assert that a pair of T -supports is present and cannot be
simultaneously contradicted. We obtain three new disjuncts (the other combinations
being subsumed by one of the other disjuncts):

Prof(sam) ∧ Lect(sam) ∧ ¬∃x teaches(x, sam) ∧ ¬Fellow(sam)

Lect(sam) ∧ Fellow(sam) ∧ ¬∃x teaches(x, sam) ∧ ¬Prof(sam)

Fellow(sam) ∧ Prof(sam) ∧ ¬∃x teaches(x, sam) ∧ ¬Lect(sam)

Finally, for k = 3, we must add further disjuncts to check for the existence of a triple
of T -supports which are present and cannot be defeated. In our case, this leads to one
new (non-subsumed) disjunct:

Prof(sam) ∧ Lect(sam) ∧ Fellow(sam) ∧ ¬∃x teaches(x, sam)

Note that this last disjunct is satisfied in IAsam , witnessing 〈Tuniv,Asam〉 |=3-supp q1.
Notice also that in this particular example, the CQA and 3-support semantics coincide,
and so the FO-rewriting for k = 3 is also a FO-rewriting under the CQA semantics.

Example 7. We now consider how to rewrite the query q2 under the k-defeater seman-
tics. When k = 0, the construction yields the following FO-rewriting:

¬
(
¬(∃xFaculty(sam) ∧ teaches(sam, x)) ∧ ¬Prof(sam)
∧ ¬Lect(sam) ∧ ¬(∃xFellow(sam) ∧ teaches(sam, x))

)
Inside the negation, there is a single disjunct which asserts that the empty set conflicts
with every T -support, or equivalently, that there are no T -supports. When k = 1, we
must add further disjuncts inside the negation to capture single facts which conflict with
all T -supports. In our case, we must add two new disjuncts:

∃x teaches(x, sam) Fellow(sam) ∧ ¬teaches(sam, x)

The first disjunct is needed since any fact of the form teaches(x, sam) contradicts
Faculty(sam), and hence, every T -support for q2. The second disjunct treats the case
where there is no atom teaches(x, sam), in which case the only possible T -supports
for q2 are Prof(sam) and Lect(sam), both of which are contradicted by Fellow(sam).
Notice that this last disjunct holds in IAsam , which proves that 〈Tuniv,Asam〉 6|= q2.

We briefly remark that polynomial data complexity is not preserved under the new
semantics. Indeed, in the lightweight DL EL⊥, CQ answering and unsatisfiability are
P-complete w.r.t. data complexity, but it was shown in [18] that instance checking under
the IAR (equiv. 1-support) semantics is coNP-hard w.r.t. data complexity, and it is not
hard to show intractability also for the brave (equiv. 0-defeater) semantics.

6 Combined Complexity

To gain further insight into the computational properties of the different inconsistency-
tolerant semantics considered in this paper, we study the combined complexity of in-
stance checking and CQ entailment for DL-Lite and DL-LiteHorn KBs under these se-
mantics. The results of our analysis are reported in Figure 1.



IAR k-supp (k > 1) CQA k-def (k > 0) brave

IC DL-Lite NLSPACE NLSPACE coNP NLSPACE NLSPACE

DL-LiteHorn coNP ≥ coNP coNP NP NP
≤ ∆p

2[O(log n)]

CQ DL-Lite NP NP Πp
2 NP NP

DL-LiteHorn ∆p
2[O(log n)] ∆p

2[O(log n)] Πp
2 NP NP

Fig. 1. Combined complexity of instance checking (IC) and conjunctive query entailment (CQ)
under various inconsistency-tolerant semantics. All results are completeness results, unless oth-
erwise noted.

Before presenting the results in more detail, let us begin with some general ob-
servations. First, it is interesting to note that for DL-Lite KBs, the complexities ob-
tained for the IAR, k-support, brave, k-defeater, and classical semantics all coincide,
and are strictly lower than the complexity w.r.t. the CQA semantics. By contrast, for
DL-LiteHorn KBs, instance checking under any of the considered inconsistency-tolerant
semantics is of higher complexity than under classical semantics. Moreover, we lose the
symmetry between the sound and complete approximations. Indeed, for CQ entailment,
the complexities of the sound approximations (IAR and k-support) is higher than for
the complete approximations (brave and k-defeater semantics).

Finally, we remark that in several cases, and in particular, for the k-support seman-
tics, the complexity for DL-LiteHorn is higher than for DL-Lite. This can be explained
by the fact that for DL-Lite KBs, the size of a minimal T -support of a query is linear in
the size of the query and independent of T , whereas for DL-LiteHorn KBs, the bound
on minimal T -supports depends also on the size of T . Overall, these results suggest
that while the k-support and k-defeater semantics are tractable w.r.t. data complexity
for both DL-Lite and DL-LiteHorn , it will likely be much easier to obtain practical al-
gorithms for DL-Lite KBs.

We now present our different complexity results and some brief ideas concerning
the proofs. We start by showing that for DL-Lite, instance checking under the proposed
semantics has the same low complexity as under classical semantics.

Theorem 4. In DL-Lite, instance checking under the k-support semantics is NLSPACE-
complete w.r.t. combined complexity, for every k ≥ 1. The same holds for the k-defeater
semantics, for every k ≥ 0.

Proof (idea). The proof exploits the fact that when T is a DL-Lite ontology, minimal
T -supports for IQs consist of single facts, and minimal T -inconsistent subsets contain
at most two facts. This means in particular that every k-tuple of minimal T -supports
contains at most k facts, and at most k facts are needed to contradict all k supports.
This enables a NLSPACE procedure which guesses k facts and verifies that each fact is
a T -support, and that there is no set with at most k facts which contradicts all of the
guessed facts. The upper bound for the k-defeater semantics uses similar ideas.

In DL-LiteHorn , instance checking is intractable already for the IAR and brave se-
mantics, and the lower bounds can be used to show intractability also for the k-support



and k-defeater semantics. For the k-defeater semantics, Theorem 6 provides a matching
upper bound, while the precise complexity for the k-support semantics remains open.

Theorem 5. Instance checking in DL-LiteHorn is coNP-complete w.r.t. combined com-
plexity under the IAR semantics, coNP-hard w.r.t. combined complexity under k-support
semantics, and NP-complete w.r.t. combined complexity under both the brave semantics
and k-defeater semantics.

Proof (idea). We sketch the coNP lower bound for the IAR semantics, which is by
reduction from UNSAT. Let ϕ = c1 ∧ . . . ∧ cn be a propositional CNF over variables
x1, . . . , xm. Consider the DL-LiteHorn KB with

T ={Ti v Cj | xi ∈ cj} ∪ {Fi v Cj | ¬xi ∈ cj}∪
{Ti u Fi v ⊥ | 1 ≤ i ≤ m}∪{A u C1 u . . . u Cn v ⊥}

andA = {A(a)}∪{Ti(a), Fi(a) | 1 ≤ i ≤ m}. Then it can be shown that 〈T ,A〉 |=IAR

A(a) if and only if the formula ϕ is unsatisfiable.

We next consider the complexity of CQ entailment under our proposed semantics.
For DL-Lite, we obtain precisely the same complexity as under the classical semantics.

Theorem 6. In DL-Lite, CQ entailment under the k-support semantics is NP-complete
w.r.t. combined complexity, for every k ≥ 1. For both DL-Lite and DL-LiteHorn , CQ
entailment under the k-defeater semantics is NP-complete w.r.t. combined complexity,
for every k ≥ 1.

Proof (idea). We sketch the upper bound for the k-defeater semantics. Fix a DL-LiteHorn

KB 〈T ,A〉 and a CQ q. Let S1, . . . , Sm be the T -consistent subsets of A with cardi-
nality at most k. Guess a sequence C1, . . . , Cm of subsets of A of cardinality at most
c = 2 · |q| · |T |, together with polynomial certificates that 〈T , Ci〉 |= q, for each Ci.
Output yes if for every 1 ≤ i ≤ m, the certificate is valid and Si ∪ Ci is T -consistent.
As m is polynomial in |A| (since k is fixed), and both conditions can be verified in
polynomial time for DL-LiteHorn KBs, we obtain an NP procedure. Correctness relies
on the fact that because T is a DL-LiteHorn ontology, every minimal T -support for q
has cardinality at most c.

For DL-LiteHorn , CQ entailment under the IAR and k-support semantics rises to
∆p

2[O(log n)]-complete.

Theorem 7. In DL-LiteHorn , CQ entailment under k-support semantics is∆p
2[O(log n)]-

complete w.r.t. combined complexity, for every k ≥ 1.

Proof (idea). The lower bound is by a non-trivial reduction from the Parity(SAT) prob-
lem [21]. For the upper bound, consider the following algorithm which takes as input a
DL-LiteHorn KB 〈T ,A〉 and CQ q:

1. For every k-tuple (α1, . . . , αk) ⊆ Ak of facts, use an NP oracle to decide whether
every repair contains some αi. Let S contain all k-tuples for which the test succeeds.



2. A final oracle call checks if there is a k-tuple (C1, . . . , Ck) of subsets of A of cardi-
nality at most c = 2 · |T | · |q| such that (i) every Ci is T -consistent and 〈T , Ci〉 |= q,
and (ii) every k-tuple (β1, . . . , βk) with βi ∈ Ci belongs to S. Return yes if the call
succeeds, else no.

Every minimal T -support for q contains at most c facts. It follows that the algorithm
returns yes if 〈T ,A〉 |=k-supp q. Conversely, if the output is yes, with (C1, . . . , Cn) the
k-tuple from Step 2, then by (i), every Ci is a T -support for q. Moreover, (ii) ensures
that every repair contains someCi, for it not, we could find some k-tuple (β1, . . . , βk) ∈
C1 × . . . × Cn which does not belong to S, contradicting (ii). Note that the algorithm
runs in polynomial time with an NP oracle, since there are only polynomially many
k-tuples of facts to consider, for fixed k. As the oracle calls can be organized into a tree,
membership in ∆p

2[O(log n)] follows by a result from [11].

Finally, we determine the combined complexity of instance checking and CQ en-
tailment for the CQA semantics (prior results only considered data complexity).

Theorem 8. For DL-Lite and DL-LiteHorn , instance checking (resp. CQ entailment)
under CQA semantics is coNP-complete (resp. Πp

2 -complete) for combined complexity.

Proof (idea). The upper bounds are easy: guess a repair and show that it does not en-
tail the query. The coNP-lower bound for instance checking follows from the coNP-
hardness of this problem w.r.t. data complexity. The Πp

2 -hardness result involves a non-
trivial reduction from 2-QBF validity.

We should point out that our proofs are quite generic and can be directly used (or
trivially extended) to obtain results for a whole rangle DL-Lite dialects (as well as other
ontology languages).

7 Future Work

The present work can be extended in several directions. First, we believe that our ap-
proach can have a practical impact on OBDA systems, so we aim to implement and
experiment with the approach. It would also be very interesting to investigate the con-
nections between our approach and approximate knowledge compilation [19]: in par-
ticular, it would be important (also for practical purposes) to study the possibility of
effectively “compiling” our semantics. Moreover, it is also relevant to extend our anal-
ysis to more complex OBDA systems, where the ontology elements are related to the
data sources through complex mappings [17]. Finally, while the present approach is
computationally attractive for all known FO-rewritable ontology languages, tractable
approximations of the CQA semantics for other tractable yet non-FO-rewritable ontol-
ogy languages (like EL⊥ [3]) are still missing.
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