
Complete Classification of ComplexALCHO
Ontologies using a Hybrid Reasoning Approach

Weihong Song, Bruce Spencer, and Weichang Du

Faculty of Computer Science, University of New Brunswick, Fredericton, Canada
{song.weihong, bspencer, wdu}@unb.ca

Abstract. Consequence-based reasoners are typically significantly faster than
tableau-based reasoners for ontology classification. However, for more expres-
sive DL languages like ALCHO, consequence-based reasoners are not appli-
cable, but tableau-based reasoners can sometimes require an unacceptably long
time for large and complex ontologies. This paper presents a weakening and
strengthening approach for classification ofALCHO ontologies, using a hybrid
of consequence- and tableau-based reasoning. We approximate the original ontol-
ogyOo by a weakened versionOw and a strengthened versionOs, both are in a less
expressive DLALCH and classified by a consequence-based main reasoner. The
classification from Ow is sound but possibly incomplete with respect to Oo, while
that from Os is complete but possibly unsound. The additional subsumptions de-
rived from Os may be unsound so are further verified by a tableau-based assistant
reasoner. A prototype classifier called WSClassifier is implemented based on this
hybrid approach. The experiments results show that for classifying many large
and complex ALCHO ontologies, WSClassifier’s performance is significantly
faster than tableau-based reasoners.

1 Introduction

The target of classification is to calculate all the subsumption relationships between
atomic concepts implied by the input ontology. (Hyper)Tableau-based [9,13] and
consequence-based reasoners are two of the mainstream reasoners for ontology clas-
sification. Current (hyper)tableau-based reasoners such as HermiT [13], FaCT++ [20],
Pellet [18] and RacerPro [8], are able to classify ontologies in very expressive DLs.
However, despite various optimizations having been applied, classifying certain exist-
ing large and complex ontologies is still a challenge for these reasoners, such as various
versions of Galen and FMA ontologies. We regard an ontology complex if it is highly
cyclic. In contrast to the (hyper)tableau-based reasoners, consequence-based reasoners
[10,11,17] are typically very fast but support less expressive DLs. They are variations
of so-called completion-based approaches proposed for the OWL EL family [3,5]. So
far the most expressive languages that are supported by consequence-based reasoners
are Horn-SHIQ [10] andALCH [17].

In this paper we introduce a hybrid reasoning approach for classification of on-
tologies in the DL ALCHO, using a consequence-based main reasoner MR and a
tableau-based assistant reasoner AR. MR provides sound and complete classification
over the DLALCH which is less expressive thanALCHO, while AR provides sound

and complete classification overALCHO. Suppose MR reasoning is much faster than
AR. We try to classify an ontology Oo using MR to do the major work, and AR to do
auxiliary work. We produce a weakened version Ow by removing from Oo the nominal
axioms that are beyondALCH , and a strengthened version Os by adding to Ow a set of
strengthening axioms O+ in ALCH that compensate for the removed axioms. Os and
Ow are in ALCH and are classified by MR producing Hw and Hs, correspondingly.
Hw,Ho andHs are classification results of Ow, Oo and Os, respectively. Subsumptions
in Hw are sound but may not be complete w.r.t Oo, whereas subsumptions in Hs are
complete but may not be sound. Unsound subsumptions inHs\ Hw are detected by AR
and filtered out. Those that remain are added toHw resulting in the sound and complete
classification of Oo. We call this approach weakening and strengthening (WS).

We have implemented a prototype WSClassifier by applying the proposed WS
approach and evaluated it. Our previous study on WS approach and application to
ALCHOI ontologies [19] did not guarantee the completeness of classification. The
contribution of this paper is to improve the algorithms and theoretically prove our clas-
sification result onALCHO ontologies is sound(trivial) and complete.

The rest of the paper is organized as follows: Section 2 gives an overview of our
hybrid classification procedure for ALCHO ontologies and prove its completeness.
Section 3 introduces computation of strengthening axioms and Section 4 contains the
related work. Section 5 is our partial empirical results and conclusion. Finally, we put
all the proofs of lemmas and theorems in Appendix B and complete evaluation in Ap-
pendix C.

2 Hybrid Classification of Ontologies

The syntax and semantics of ALCHO follows DL conventions. In this paper, we use
A, B, E, F for atomic concepts, C,D for concepts, R, S for roles, a, b for individuals,
H,K for conjunctions of atomic concepts, and M,N for disjunctions.

Algorithm 1 describes our hybrid procedure for classifying Oo. It consists of three
stages: (1) a normalization stage (line 1) during which the ontology is rewritten to
simplify the forms of axioms in it; (2) a main classification stage (lines 2 to 8) in
which Ow and Os are generated and classified using the MR; and (3) a verification stage
(lines 9 to 17) in which the subsumptions arising from just the Os are verified using AR.
We use notations C and Co to denote the set of atomic concepts in Oo before and after
normalization, respectively, and C>,⊥ = C ∪ {>,⊥}.

In the normalization stage, the ALCHO ontology Oo is rewritten to contain only
axioms of forms

d
Ai v

⊔
B j, A v ∃R.B, ∃R.A v B, A v ∀R.B, R v S , or Na ≡ {a}.

The procedure extends normalization in František et al. [17] by introducing for each
{a} a nominal placeholder Na and adding a nominal axiom Na ≡ {a}. We write NP for
the set of all nominal placeholders after normalization. The transformation preserves
subsumptions in Oo. We assume all ontologies are normalized in the rest of the paper.

In the verification stage, there are some cases we hand over the classification work
to AR: (1) Na v ⊥ ∈ Hs; (2) E v ⊥ ∈ Hs but Oo 6|= E v ⊥, then for every F ∈ C>,⊥,
E v F ∈ Hs, while likely only few of them are in Hw, thus Hs \ Hw may be huge; (3)
the fraction ‖ Hs \ Hw ‖ / ‖ C ‖ is greater than a threshold d. In the latter two cases,

2

Algorithm 1: HybridClassify(Oo)
Input: AnALCHO ontology Oo
Output: The classification result of Oo

1 normalize Oo;
2 Ow ← Oo with nominal axioms Na = {a} removed; /* Weakening */

3 Hw ← MR.classify(Ow); /* Classify the weakened ontology. */

4 O+ ← getNominalStrAx(Ow,NP,C
>,⊥); /* from Algorithm 4 */

5 remove all E v F fromHw where 〈E, F〉 < C>,⊥ × C>,⊥;
6 if O+ = ∅ then returnHw;
7 Os ← Ow ∪ O

+;
8 Hs←MR.classify(Os); /* Classify the strengthened ontology. */

9 if Na v ⊥ ∈ Hs for some Na ∈ NP then return AR.classify(Oo);
10 remove all E v F fromHs where 〈E, F〉 < C>,⊥ × C>,⊥;
11 if ‖ Hs \ Hw ‖ / ‖ C ‖> d then return AR.classify(Oo);
12 Hws ← Hw;
13 foreach E v ⊥ ∈ Hs \ Hw do
14 if AR.isSatisfiable(Oo, E) then return AR.classify(Oo);
15 else add E v ⊥ intoHws;
16 foreach E v F ∈ Hs \ Hw where F , ⊥ do
17 if not AR.isSatisfiable(Oo, E u ¬F) then add E v F intoHws;
18 returnHws

the estimated work for the stage is more than using AR to classify Oo. For (3) we set
d = 1.5 in our implementation based on the experiments in [7].

In the main classification stage, the major work is to generate theALCH ontologies
Ow and Os. Ow is produced by simply removing all the nominal axioms of the form
Na ≡ {a} from Oo. Since Ow ⊆ Oo, Oo |= Ow and so Hw ⊆ Ho, i.e. the classification
result of Ow is sound w.r.t. Oo.

Example 1. Consider the following normalized ontology Oo,ex which we will use as a
running example:

(1) A v C (2) A v ∃R.E (3) E v Na (4) C v ∀R.D

(5) D v G (6) A v ∃S .Na (7) Na ≡ {a}
::::::

(8) ∃S .D v F

Classification result of Oo,ex isHo,ex = {A v F, A v C, E v Na,D v G}, where A v F is
implied by axioms (1) – (4),(6) – (8). The weakened versionOw,ex ofOo,ex is obtained by
removing nominal axiom (7). And its classification resultHw,ex = {A v C, E v Na,D v G}.
We can see that A v F, which requires (7) to imply, is missing in Hw,ex. We will see
later how we add strengthening axioms to get A v F inHs,ex.

The most difficult part of the procedure is to find Os which entails no fewer sub-
sumptions than Oo. A sufficient condition is that for any A, B ∈ C>,⊥ such that Os 6|=

A v B, there exists a model I of Os satisfying A u ¬B, and it can be transformed to a
model I′ of Oo satisfying A u ¬B. Since Os is obtained from Ow by adding strengthen-
ing axioms, every model I of Os satisfies all axioms in Oo except possibly the nominal

3

axioms, which require the interpretation of each Na ∈ NP to have exactly one instance,
whereas for an arbitrary model I of Os, NIa could have zero or multiple instances. How-
ever, if for each Na, NIa , ∅ and all the instances are “identical”, they can be replaced
by a single instance. Concretely, these instance have the same label set:

Definition 1 Given an interpretation I = (4I, ·I), an atomic concept A is called a
label of an instance x if x ∈ AI. The set of all the labels of x is named the label set of x
in I, denoted by LS (x,I).

Such a replacement is called a condensation – it condenses all of the different instances
into one instance, and thus it transforms I into a model that satisfies the nominal axiom
for Na. If such a condensation can be done for all nominal placeholders, then we can
create a model for Oo.

The strengthening axioms are designed to make these condensations possible. They
have the form Na v X and Na u X v ⊥ computed by Algorithm 4, and thus they
force X to be a label of the nominal instance Na, or not to be one, respectively. By
“manipulating” labels of nominal instances through these strengthening axioms, we
can force them all to be identical in certain models, so that the condensations can occur.

The models we construct for transformation are variants of the canonical model
constructed for ALCH ontologies [17]. Our model construction is introduced in Ap-
pendix A. Given F ∈ C>,⊥, our approach ensures we can build a model of Os, which
satisfies every E u ¬F where Os 6|= E v F. And every such model can be condensed
to a model of Oo satisfying E u ¬F. Stating the contrapositive: if Oo |= E v F then
Os |= E v F. Thus classification of Os is complete. Soundness of our approach is en-
sured by the verification stage, and completeness is proved in the following section 2.1.

2.1 Condensing Labels and Completeness

Due to space limitation, we only list the important definitions, lemmas, property and
theorems in the paper, all their proofs are in Appendix B. Here we briefly introduce
some notations used later. We write O+ for any intermediate (including final) version of
strengthening axioms, O+

w for the corresponding intermediate (including final) version
of strengthened ontology where O+

w = Ow ∪ O
+. We write Os for the final version of

strengthened ontology. Given E, F ∈ C>,⊥ such that O+
w 6|= E v F, a canonical model

I[O+
w,≺F] ofO+

w is constructed by first computing a saturation SO+
w ofO+

w and then defining
a model based on a total order ≺F . The definition of construction of the canonical model
is in Appendix A. The computation of saturation is as follows: Given O+

w, the saturation
SO+

w is initialized as

{init(A) | A ∈ C} ∪ {init(Na) | Na ∈ NP}

Then SO+
w is expanded by iteratively applying the inference rules in Table 1 and adding

the conclusions into SO+
w until reaching a fixpoint. During this process, existing axioms

in SO+
w are used as premises and axioms in O+

w are used as side conditions. SO+
w contains

axioms of the forms init(H), H v M t A and H v M t ∃R.K. Note Table 1 is modified
from Table 3 in [17] by using R+

A and Rinit to initialize contexts whenever necessary.
The conjunction H that occurs in the premises or conclusions of the inference rules is
called the context of the inference.

4

Table 1. Complete Inference Rules for NormalizedALCH ontologies

R+
A

init(H)

H v A
: A ∈ H R−A

H v N t A

H v N
: ¬A ∈ H Rinit

H v M t ∃R.K

init(K)

Rn
u

{H v Ni t Ai}
n
i=1

H v
⊔n

i=1 Ni t M
:
dn

i=1 Ai v M ∈ O+
w R+

∃

H v N t A

H v N t ∃R.B
: A v ∃R.B ∈ O+

w

R−
∃

H v M t ∃R.K K v N t A

H v M t B t ∃R.(K u ¬A)
:
∃S .A v B ∈ O+

w

R v∗
O

S
R⊥
∃

H v M t ∃R.K K v ⊥

H v M

R∀
H v M t ∃R.K H v N t A

H v M t N t ∃R.(K u B)
:

A v ∀S .B ∈ O+
w

R v∗
O

S

Definition 2 In an interpretation I = (4I, ·I), an atomic concept L is called a con-
densing label if (1) LI , ∅ and (2) for any x, y ∈ LI, LS (x,I) = LS (y,I).

If a label applied to some instance is a condensing label then every instance to which
it applies has the same label set. This means the label sets of all such instances are
identical and can be condensed into one instance.

Definition 3 Given a model I of an ALCHO ontology O, a concept L in O and an
individual name xL, we define a condensation function condense(L, xL,I) that trans-
forms I into an interpretation I′ = (4I

′

, ·I
′

) as follows:
1). Let n be a fresh instance which is not in 4I, and r be a replacement function

r(x) =

 n x ∈ LI

x otherwise
2). 4I

′

= {r(x) | x ∈ 4I}
3). For each concept A, role R and individual o in O,
AI

′

= {r(x) | x ∈ AI},RI
′

= {(r(x), r(y)) | (x, y) ∈ RI}, oI
′

= r(oI), xI
′

L = n
We say that each x ∈ LI is condensed into n. We also say I is condensed to I′.

Definition 4 H is a potentially supporting context of A in O+
w if H v M t A ∈ SO+

w .

Definition 5 A concept X is called a Potentially Supporting concept (PS) of some A
in O+

w if either X or ¬X is a conjunct of a potentially supporting context H of A in O+
w.

The set of all PS of A in O+
w is denoted by PS[A,O+

w].

Example 2. (PS) Consider the ALCH ontology Ow,ex in Example 1, it can be seen as
an ontology O+

w,ex where O+
ex = ∅, and NP = {Na}. The potentially supporting contexts

of Na are Na, E and E u D. So PS[Na,Ow,ex] = {Na,D, E}.

Property 6 We say O+
w is decisive if for each Na ∈ NP, each X ∈ PS[Na,O

+
w], either

O+
w |= Na v X or O+

w |= Na u X v ⊥ holds.

5

Lemma 7 Given O+
w and Na ∈ NP, if (1) O+

w is decisive, and (2) O+
w 6|= Na v ⊥. Then

for any F ∈ C>,⊥, Na is a condensing label in I[O+
w,≺F].

Lemma 8 Let I be a model of anALCHO ontology O satisfying Eu¬F, E, F ∈ C>,⊥,
where L is a condensing label in I. Then I′ = condense(L, xL,I) is a model of O∪{L =

{xL}} satisfying E u ¬ F.

Lemma 9 Given some O+
w and F ∈ C>,⊥, if in I[O+

w,≺F] every Na ∈ NP is a condensing
label, then for each E ∈ C>,⊥ s.t. O+

w 6|= E v F, there is a model of Oo satisfying Eu¬F.

Theorem 10 If the O+
w we compute satisfies: (1) O+

w is decisive and (2) all Na ∈ NP are
satisfiable in O+

w. Then the classification result of O+
w is complete w.r.t. Oo.

Proof. Let E, F ∈ C>,⊥ be concepts such that O+
w 6|= E v F. Since conditions (1) and

(2) of Lemma 7 are satisfied, all Na ∈ NP are condensing labels in the canonical model
I[O+

w,≺F]. By Lemma 9, the model can be condensed to a model I′ of Oo for E u ¬F,
proving Oo 6|= E v F. So the classification result of O+

w is complete w.r.t. Oo. �

In the next section, we demonstrate how we will compute anO+
w satisfying condition

(1) in Theorem 10 i.e., is decisive. Such an O+
w can also satisfy condition (2) in most

cases as in our experiments, therefore completeness is achieved. If in a few cases that
such an O+

w ends up not satisfying condition (2), then we hand over the work to AR. The
classification result is still complete.

3 Computing Strengthened Ontology

In this section we show how to create a decisive O+
w. The property suggests that the

strengthening axioms should be of the form Na v X or Na u X v ⊥. We first briefly
introduce the strengthening axioms selection function chooseStrAxiom. Based on that,
we explain an initial idea to create a decisive O+

w. Then, we introduce how to compute
OPS[Na,O

+
w] which is an overestimation of PS[Na,O

+
w] from O+

w without doing saturation,
and give the naive and improved algorithms to compute O+.

Definition 11 A strengthening axiom selection chooseStrAxiom is a function that takes
an Na ∈ NP, X ∈ Co, and Ow and returns:

1. ∅ only if Ow |= Na v X or Ow |= Na u X v ⊥;
2. a choice between Na v X or Na u X v ⊥.

Initial idea for computing a decisive O+
w: To create such an ontology, a straightfor-

ward idea is to start from Ow, generate saturation SOw of Ow, obtain PS[Na,Ow] from SOw

for all Na ∈ NP. For each pair 〈Na, X〉, X ∈ PS[Na,Ow], we add a strengthening axiom
determined by chooseStrAxiom function into O1+. Then, add O1+ into Ow and ob-
tain O1+

w . Next, we generate saturation again based on O1+
w . Since the impact of O1+,

PS[Na,O
1+
w] ⊇ PS[Na,Ow]. Then we repeat the above process until a fixpoint at which

PS[Na,O
i+1+
w] = PS[Na,O

i+
w] for all Na ∈ NP, we call the final Oi+1+ as O+, final Oi+1+

w
as Os which is decisive. However to implement such a procedure generating the satu-
ration for PS[Na,O

+
w] is costly. Thus, instead of PS[Na,O

+
w], we compute the overestimated

PS[Na,O
+
w] called OPS[Na,O

+
w].

6

Definition 12 Given an ontology O+
w, OPS[Na,O

+
w] is a set of overestimated potentially

supporting concepts we compute such that OPS[Na,O
+
w] ⊇ PS[Na,O

+
w] for each Na ∈ NP.

Algorithm 2: getOPS
Input: NormalizedALCH ontology O+

w, a concept X, a set of nominal placeholders NP,
the set of atomic classes U in the original ontology

Output: A pair 〈OPS[X,O+
w],Pri[X,O+

w]〉

1 OPS[X,O+
w] ← ∅; Pri[X,O+

w] ← ∅; ToProcess← {X}; Exists← ∅;
2 while ToProcess , ∅ do
3 take out a label W from ToProcess;
4 if W < Pri[X,O+

w] then
5 add W to Pri[X,O+

w];
6 if W = > then stop the procedure and use AR to do the classification work;
7 foreach

d
Ai v M

⊔
W ∈ O+

w do select one Ai and add it into ToProcess;
8 foreach ∃S .Y v W ∈ O+

w and R v∗
O

S and B v ∃R.Z ∈ O+
w do

9 add B into ToProcess;
10 foreach W ∈ Pri[X,O+

w] do
11 if W ∈ U or W ∈ NP then add W to OPS[X,O+

w];
12 foreach Y v ∀S .W ∈ O+

w and R v∗
O

S and B v ∃R.Z ∈ O+
w do add ∃R.Z to Exists;

13 foreach B v ∃R.W ∈ O+
w do add ∃R.W to Exists;

14 foreach ∃R.W ∈ Exists and R v∗
O

S do
15 add W to OPS[X,O+

w];
16 foreach Y v ∀S .Z ∈ O+

w do add Z to OPS[X,O+
w];

17 foreach ∃S .Z v Y ∈ O+
w do add Z to OPS[X,O+

w];
18 return 〈OPS[X,O+

w],Pri[X,O+
w]〉

We use Algorithm 2 to compute OPS[X,O+
w]. Based on Definition 4 and 5, PS[X,O+

w]
includes all the atoms of H such that H v M t X ∈ SO+

w . Without a real procedure gen-
erating the saturation for PS[X,O+

w] as explained above, we actually compute OPS[X,O+
w]

based on analyzing the relationships among the premises, side conditions and conclu-
sions of the inference rules in Table 1. The procedure of Algorithm 2 can be divided
into three parts:

1. (line 2 to 9) We first conduct a search in the converse direction of all possible
derivation paths(Definition 16 in Appendix B) of a conclusion H v M t X for all
possible Hs. In the search we maintain a set Pri[X,O+

w]. Each concept W ∈ Pri[X,O+
w]

may be necessary to the derivation of X, and appears prior to X in the derivation
path. More precisely, W corresponds to some potential intermediate conclusion H v
M′ t W which is a necessary conclusion for deriving H v M t X. Since for any
context H, H v A is the only conclusion that can be derived from init(H), at least
one of such A, which is a conjunct of H, is in Pri[X,O+

w]. We write CX
H for such A.

Pri[X,O+
w] contains at least one conjunct CX

H for any potentially supporting context H
of X.

2. (lines 10 to 13) Check each concept W ∈ Pri[X,O+
w] to see whether it can be a conjunct

CX
H of some potential supporting context H of X. If it can, we find the first conjunct

7

C1
H of H from CX

H . C1
H (see H∗ in Lemma 13 in Appendix B), which is either in U

or NP in line 11 or the filler of concepts in Exists from line 12 to 13, is the initial
concept H starts from.

3. (line 14 to 17) Find all the other conjuncts of H based on C1
H by searching along

the derivation paths.

Lemma 13 Given O+
w and a concept A, OPS[A,O+

w] returned by Algorithm 2 preserves
OPS[A,O+

w] ⊇ PS[A,O+
w].

Example 3. (OPS) Consider again the ontology Ow,ex in Example 1.
The Execution of Alg. 2: getOPS(Ow,ex,Na, {Na}, {A,C,D, E, F,G})
Line 2 to 9 Pri[Na,Ow,ex] = {Na, E}
Line 11 OPS[Na,Ow,ex] = {Na, E}
Line 13 Exists = {∃R.E}
Line 16 OPS[Na,Ow,ex] = {Na, E,D}
Line 18 Return OPS[Na,Ow,ex] = {Na, E,D}, Pri[Na,Ow,ex] = {Na, E}
OPS[Na,Ow,ex] = PS[Na,Ow,ex] = {Na, E,D} so OPS[Na,Ow,ex] ⊇ PS[Na,Ow,ex]

For each X ∈ OPS[X,Oi+
w], we will use function chooseStrAxiom to return a strength-

ening axiom. Note in Definition 11 for chooseStrAxiom, how can we know Ow |= Na v

X or Ow |= Na u X v ⊥? Actually in Algorithm 1, line 4 (we used getNominalStrAx,
if using getNominalStrAxNaive, it is the same) executes getOPS(Ow,Na,NP,U) inter-
nally before line 3. Then for each Na ∈ NP, each X ∈ OPS[Na,Ow], we add a testing
axiom Xa v Na u X into Ow in the first round classification and obtainHw, where Xa is
a fresh concept for Ow. In Algorithm 1 and Definition 11, we ignore this detail and only
mention using Ow just for simplifying explanation. If Xa v ⊥ is found in Hw, then we
simply say Ow |= NauX v ⊥. If Na v X or NauX v ⊥ is implied byHw, we do not add
any strengthening axiom for X into Oi+1+. We remove the extra testing results fromHw

in line 5 of Algorithm 1. When choosing between Na v X and Na u X v ⊥, we use the
heuristics that if X corresponds to a union concept before normalization, and Na v X is
not implied, then we add Na u X v ⊥. For other cases, we add Na v X.

Example 4. For the concepts in OPS[Na,Ow,ex], since none of the 4 axioms Na v E,
Ea v ⊥, Na v D or Da v ⊥ is in Hw,ex, and assume E and D do not associate union
concepts before normalization, we add Na v E and Na v D as strengthening axioms
O1+

ex .

Using OPS[X,O+
w] instead of PS[X,O+

w], we design a naive Algorithm 3 based on the
above Initial Idea to generate O+ for O+

w so that O+
w is decisive. The execution process

is as follows:
1). O0+ = ∅. 2). Compute OPS[Na,O

i+
w] for ∀Na,Na ∈ NP for the Oi+.

3). Oi+1+ = {chooseStrAxiom(Na, X) | ∀Na, X,Na ∈ NP, X ∈ OPS[Na,O
i+
w]}

In each loop, we add the new Oi+ into Ow and generate Oi+
w . When the process

converges, Oi+1+ = Oi+. Since Oi+1+ is computed from OPS[Na,O
i+
w], and OPS[Na,O

i+
w] ⊇

PS[Na,O
i+
w] for all Na and for any i, thus Algorithm 3 guarantees that O+

w is decisive.

Theorem 14 LetO+ be strengthening axiom produced from Algorithm 3,O+
w = Ow∪O

+

is decisive.

8

Algorithm 3: getNominalStrAxNaive (Naive algorithm for computing strength-
ening axioms)

Input: NormalizedALCH ontology Ow, a set of nominal placeholders NP, the set of
atomic classes U in the original ontology

Output: Strengthening axioms O+

1 O+ ← ∅;
2 repeat
3 newAxioms = ∅;
4 foreach Na ∈ NP do
5 O+

w ← Ow ∪ O
+;

6 〈OPS[X,O+
w],Pri[X,O+

w]〉 ← getOPS(O+
w,Na,NP,U) ; /* from Algorithm 2 */

7 foreach X ∈ OPS[X,O+
w] do

8 newAxioms← newAxioms ∪ chooseStrAxiom(Na, X);
9 O+ ← O+ ∪ newAxioms;

10 until newAxioms = ∅;
11 return O+

Theorem 15 Let O+ be strengthening axioms computed from Algorithm 4, O+
w = Ow ∪

O+ is decisive.(Proof see Appendix B, the following is just an intuitive explanation)

Algorithm 4 improves Algorithm 3 by avoiding repetitive search process. In each loop
of Algorithm 3, Algorithm 2 getOPS bases on the axioms of the input Oi+1+

w to compute
OPS[Na,O

i+1+
w] for Na, where only search on Oi+1+

w \Oi+
w is new, the majority work – search

on Ow is repeated in each iteration, while Algorithm 4 improves this and only executes
getOPS based on Ow for once in line 3. In Algorithm 2 and 3, a strengthening axiom
α can take effect only in the following situation: If α = {Nb v X} ∈ Oi+

w , X ∈ Pri[Na,O
i+
w],

then Nb ∈ OPS[Na,O
i+
w]. If chooseStrAxiom(Na,Nb) return Na v Nb in Oi+1

w , then Na ∈

OPS[Nb,O
i+1+
w]. That means because of α, in the end, OPS[Na,O

+
w] = OPS[Nb,O

+
w].

In Algorithm 4, without really computing each ofOi+
w and repeatedly search on them, we

achieve similar results based on the merge criteria in line 6 and the merge operation from
lines 7 to line 7. Assume Nb ∈ gi.nominals and Na ∈ g j.nominals, X ∈ gi.ops∩g j.pri ,
∅ in line 6. Then, X ∈ gi.ops means Nb v X will possibly be a strengthening axiom,
X ∈ g j.pri means X is possibly in Na’s Pri, then gi and g j are merged into one group,
and finally OPS[Na,O

+
w] = OPS[Nb,O

+
w], too, similar with Algorithm 3.

Example 5. In Algorithm 3, O1+
ex = O2+

ex . Thus, the loop from line 2 to 9 repeats twice.
In Algorithm 4, since NP = {Na}, the merge process from line 6 to 7 does not happen.
For both algorithms, that means O1+

ex does not have impact in later saturation.

Note the naive Algorithm 3 is only used for demonstrating our initial idea. In our
implementation, we used the improved Algorithm 4. All three Algorithms 2, 3 and 4
have polynominal complexity. In Algorithm 2, the number of iterations in all levels of
loops are bounded by the number of axioms or concepts in Ow, and thus have polyno-
mial complexity. In Algorithm 3, the number of iterations is bounded by the size of O+,
which is also polynomial. In Algorithm 4, the merge loop can only continue for at most
||NP|| times. So all the algorithms are polynomial of the size of Ow and terminate.

9

Algorithm 4: getNominalStrAx (Calculate strengthening axioms for nominals)
Input: NormalizedALCH ontology Ow, a set of nominal placeholders NP, the set of

atomic classes U in the original ontology
Output: Strengthening axioms O+

1 groups← ∅;
2 foreach Na ∈ NP do
3 〈OPS[Na ,Ow],Pri[Na ,Ow]〉 ← getOPS(Ow,Na,NP,U); /* from Algorithm 2 */

4 create a group g with g.nominals = {Na}, g.ops = OPS[Na ,Ow], g.pri = Pri[Na ,Ow];
5 add g into groups;
6 while there exists gi, g j ∈ groups such that gi.ops ∩ g j.pri , ∅ do
7 merge gi, g j into one group g, whose properties are unions of corresponding

properties of gi and g j; remove gi, g j from groups and add g;
8 foreach g ∈ groups do
9 foreach Na ∈ g.nominals do

10 foreach X ∈ g.ops do
11 O+ ← O+ ∪ chooseStrAxiom(Na, X);
12 return O+

Example 6. : The Overall Execution Results from Alg. 1:
(1) Weakened Ontology Ow: Na ≡ {a} removed Line 2 of Alg. 1
(2) Class HierarchyHw: A v C E v Na D v G Line 3 of Alg. 1
(3) Strengthening axioms O+: two axioms added: Na v E Na v D
(4) For (3): Line 4 of Alg. 1 return from Alg. 4 For (5): Line 8 of Alg. 1
(5) Class HierarchyHs: A v C E v Na D v G A v F Na v E Na v D
(6) Verify the following 6 pairs (indirect subsumptions included): Line 16 to 17
(7) A v F E v D E v G Na v D Na v E Na v G, 1 pair validated: A v F
(8) Class Hierarchy Hws=Ho: A v C A v F E v Na D v G. Line 18 of Alg. 1

4 Related Work

Optimization techniques for ontology classification have been extensively studied in
the literature [4,16,7,12]. For tableau-based reasoners, Enhanced Traversal (ET) [4]
and KP [16,7] are the most widely used techniques. Optimizations for consequence-
based classification of ELO ontologies were also studied [12], and the most effective
technique is overestimation. Firstly, the algorithm saturates the ontology using infer-
ence rules for EL and obtains sound subsumptions. Next, potential subsumptions are
obtained by continuing saturation with a new overestimation rule added. Finally, the
potential subsumptions are checked using a sound and complete but slower procedure
for ELO. Comparing with this procedure, we support a more expressive DLALCHO.

In the area of hybrid reasoning, Romero et al. [1,2] proposed classification based
on modules given to a SROIQ reasoner R and an efficient L-reasoner RL supporting
a fragment L of SROIQ. Given Oo, they find a set of classes ΣL whose superclasses
in Oo can be computed by classifying a subsetML of Oo in DL L. The superclasses of
remaining classes are computed using R. However, because of the restriction of locality-
based modular approach used for computing ΣL, nominal axioms Na ≡ {a} cannot be

10

moved out fromML [6]. Therefore, in order to guarantee completeness, either RL sup-
ports nominals or all the work is assigned to R. In current implementation of MORe,
RL does not support non-safe [12] use of nominals in the Galen ontologies, so R has to
do all the work. In sum, module extraction technique MORe uses for classification is a
more general technique that is primarily intended for ontologies in DLs whose expres-
sivity is beyond ALCHO. In contrast, our approach currently only supports language
ALCHO, combines the two reasoners differently, handles nominals, and improves on
its full reasoner more often for complex and highly cyclic ontologies.

Our approach generally belongs to theory approximation [15]. Yuan et. al. [14]
encoded SROIQ ontologies into EL++ with additional data structures, and classified
by a tractable, sound but incomplete algorithm [14]. A strengthened approximation of
SROIQ TBoxes with the OWL 2 RL profile [21] is used for query answering.

5 Empirical Results and Conclusion

We have implemented our prototype hybrid classifier WSClassifier in Java. The classi-
fier uses ConDOR as the main ALCH reasoner and HermiT as the assistant reasoner
for DL ALCHO. WSClassifier adopts a well-known preprocessing step to eliminate
transitive roles [10], hence supports DL SHO. We set the Java heap space to 12GB
and the time limit to 9 days for all reasoners. We compared the classification time of
WSClassifier with main-stream tableau-based reasoners and another hybrid reasoner
MORe on all large and highly cyclic ontologies available to us, on the ORE dataset
and on some proposed variants. For classifying FMA-constitutionalPartForNS(FMA-
C) which is the only real-world large and highly cyclic ontologies with nominals we
have access to, WSClassifier used 21.2 seconds, while HermiT used 140,882 seconds
with configuration of simple core blocking and individual reuse. Other reasoners did
not get a result because they ran out either of time or memory. We put the evaluation
result Table 2 of comparison of classification performance in Appendix C. The results
of Table 2 show, excluding ORE dataset, that WSClassifier is significantly faster than
the tableau-based reasoners on 7 out of 10 ontologies. For the other 3 of 10 ontologies,
WSClassifier detected that strengthening axioms made some concepts unsatisfiable in
Os, and so failed over to HermiT. We see a major speedup for WSClassifier on ORE’s
FMA-lite which is highly cyclic and is our targeted ontology. For the remaining 112
ORE ontologies which are not highly cyclic and thus not our target, WSClassifier failed
over to HermiT on one of them. Our average reasoning time on these 112 ontologies is
longer than that of the other reasoners mainly due to our overheads: computing normal-
ized axioms and transmitting the ontology to and from ConDOR.

We have presented a hybrid reasoning technique for soundly and completely clas-
sifying an ALCHO ontology based on a weakening and strengthening approach. The
input ontology is approximated by two ALCH ontologies, one weakened Ow and one
strengthened Os, which are classified by a fast consequence-based reasoner. The sub-
sumptions of Ow and Os are a subset and a superset of the subsumptions of the original
ontology, respectively. Subsumptions implied by Os but not by Ow are further checked
by a (slower) ALCHO reasoner. This approach is possibly applied to different lan-
guage classes, each requiring different strengthening axioms. The implementation can
be improved with heuristics for a tighter OPS[Na,O

+
w] and better strengthening axioms.

11

References

1. Armas Romero, A., Cuenca Grau, B., Horrocks, I.: Modular combination of reasoners for
ontology classification. In: Proc. of DL (2012)

2. Armas Romero, A., Cuenca Grau, B., Horrocks, I.: MORe: Modular combination of OWL
reasoners for ontology classification. In: Proc. of ISWC. pp. 1–16 (2012)

3. Baader, F., Brandt, S., Lutz, C.: Pushing the EL envelope. In: Proc. of IJCAI. pp. 364–369
(2005)

4. Baader, F., Hollunder, B., Nebel, B., Profitlich, H.J., Franconi, E.: An empirical analysis
of optimization techniques for terminological representation systems. Applied Intelligence
4(2), 109–132 (1994)

5. Baader, F., Lutz, C., Suntisrivaraporn, B.: CEL – a polynomial-time reasoner for life science
ontologies. In: Proc. of IJCAR. pp. 287–291 (2006)

6. Cuenca Grau, B., Horrocks, I., Kazakov, Y., Sattler, U.: A logical framework for modularity
of ontologies. In: Proc. of IJCAI. pp. 298–303 (2007)

7. Glimm, B., Horrocks, I., Motik, B., Shearer, R., Stoilos, G.: A novel approach to ontology
classification. J. Web Semantics 14, 84–101 (2012)

8. Haarslev, V., Möller, R.: RACER system description. In: Proc. of IJCAR. pp. 701–705 (2001)
9. Horrocks, I., Sattler, U.: A Tableau decision procedure for SHOIQ. J. Automated Reason-

ing 39(3), 249–276 (2007)
10. Kazakov, Y.: Consequence-driven reasoning for Horn SHIQ ontologies. In: Proc. of IJCAI.

pp. 2040–2045 (2009)
11. Kazakov, Y., Krötzsch, M., Simanc̆ı́k, F.: Concurrent classification of EL ontologies. In:

Proc. of ISWC. pp. 305–320 (2011)
12. Kazakov, Y., Krötzsch, M., Simančı́k, F.: Practical reasoning with nominals in the EL family

of description logics. In: Proc. of KR. pp. 264–274 (2012)
13. Motik, B., Shearer, R., Horrocks, I.: Hypertableau reasoning for description logics. J. Artifi-

cial Intelligence Research 36(1), 165–228 (2009)
14. Ren, Y., Pan, J.Z., Zhao, Y.: Soundness preserving approximation for TBox reasoning. In:

Proc. of AAAI (2010)
15. Selman, B., Kautz, H.: Knowledge compilation and theory approximation. J. ACM 43(2),

193–224 (1996)
16. Shearer, R., Horrocks, I.: Exploiting partial information in taxonomy construction. In: Proc.

of ISWC. pp. 569–584 (2009)
17. Simanc̆ı́k, F., Kazakov, Y., Horrocks, I.: Consequence-based reasoning beyond Horn ontolo-

gies. In: Proc. of IJCAI. pp. 1093–1098 (2011)
18. Sirin, E., Parsia, B., Cuenca Grau, B., Kalyanpur, A., Katz, Y.: Pellet: A practical OWL-DL

reasoner. J. Web Semantics 5(2), 51–53 (2007)
19. Song, W., Spencer, B., Du, W.: WSReasoner: A prototype hybrid reasoner for ALCHOI

ontology classification using a weakening and strengthening approach. In: Proc. of the 1st
Int. OWL Reasoner Evaluation Workshop (2012)

20. Tsarkov, D., Horrocks, I.: FaCT++ description logic reasoner: System description. In: Proc.
of IJCAR. pp. 292–297 (2006)

21. Zhou, Y., Cuenca Grau, B., Horrocks, I.: Efficient upper bound computation of query answers
in expressive description logics. In: Proc. of DL (2012)

A Canonical Model Construction

Given F ∈ C>,⊥ and O+
w, our target is to construct a model I[O+

w,≺F] for O+
w satisfying

E u ¬F for any E ∈ C>,⊥ such that O+
w 6|= E v F. We write I for I[O+

w,≺F] when the

12

parameters are not important. The construction is done by first computing a saturation
SO+

w of O+
w and then defining a model based on it. SO+

w contains axioms of the forms
init(H), H v M t A and H v M t ∃R.K derived using the inference rules.

(1) Computation of saturation
Given anALCH ontology O+

w, the saturation SO+
w is initialized as

{init(A) | A ∈ C>} ∪ {init(Na) | Na ∈ NP}

Then SO+
w is expanded by iteratively applying the inference rules in Table 1 and

adding the conclusions into SO+
w until reaching a fixpoint. An inference rule is ap-

plied by using existing axioms in SO+
w as premises and axioms in O+

w as side condi-
tions. We write O+

w ` α for every α ∈ SO+
w derived from O+

w. The inference process
is obviously sound, i.e. if O+

w ` α then O+
w |= α.

(2) Model construction
We define a total order ≺F over all the concepts in O+

w such that F has the least
order. If F is ⊥ or >, the order can be any arbitrary order. We define the domain 4I

of I[O+
w,≺F] as

4I := {xH | init(H) ∈ SO+
w and H v ⊥ < SO+

w }

where xH is an instance introduced for H. 4I is nonempty because if O+
w is consis-

tent, > v ⊥ < SO+
w . Since init(>) ∈ SO+

w , x> exists.
To define the interpretation for atomic concepts, we first construct the label set
LS (xH ,I) for each instance xH . In this section, we write IH for LS (xH ,I). Let Ai

be the concept with the ith order from the smallest to the largest according to ≺F .
For convenience we write M ≺F Ai if for each disjunct A in M, A ≺F Ai. Let Ii

H be
a sequence where I0

H := ∅, and Ii
H is defined as

Ii
H :=

Ii

H ∪ {Ai} if there exists M ≺F Ai such that
O+

w ` H v M t Ai and M ∩ Ii−1
H = ∅

Ii−1
H otherwise

The last element of the sequence is defined as LS (xH ,I). With the LS (xH ,I) de-
fined, the interpretation of an atomic concept A is defined as

AI := {xH | A ∈ LS (xH ,I)}

The roles are interpreted to satisfy the axioms H v M t ∃R.K. For each role R and
each H such that xH ∈ 4

I, define

IR
H := {K | ∃M : O+

w ` H v M t ∃R.K,M ∩ IH = ∅}

A conjunction K is said to be maximal in LS R(xH ,I) if there is no K′ ∈ IR
H with a

superset of conjuncts of K. Since H v ⊥ < SO+
w , by R⊥

∃
rule we have K v ⊥ < SO+

w .
And by Rinit rule we have init(K) ∈ SO+

w . So xK is well-defined. The interpretation
of roles is defined as

RI :=
⋃

R′vO+
w

R

{(xH , xK) | K is maximal in IR′
H }

13

The inference rules in Table 1 is modified from Table 3 in [17] by using R+
A and Rinit

to initialize contexts only when necessary. The change affects only the validity of xK in
the construction for RI which has been explained above, and the proof that I satisfies
each type of axiom can be kept unchanged from Simancik et. al. [17]. So I is a model
of theALCH ontology O+

w. Moreover, for any E ∈ C>,⊥, if O+
w 6|= E v F, O+

w 0 E v F.
Since F has the least order in ≺F , by the definition of LS (xE ,I) we know xE < FI.
Thus xE ∈ (E u ¬F)I, and I[O+

w,≺F] satisfies E u ¬F.

B Proofs of Lemmas and Theorems

Lemma 7 Given O+
w and Na ∈ NP, if (1) O+

w is decisive, and (2) O+
w 6|= Na v ⊥. Then

for any F ∈ C>,⊥, Na is a condensing label in I[O+
w,≺F].

Proof. For simplicity we write I for I[O+
w,≺F] in this proof. Since init(Na) ∈ SO+

w and
O+

w 6|= Na v ⊥, by the construction of I, xNa exists and xNa ∈ NIa . Hence it is equivalent
to show that for each xH ∈ NIa , LS (xH ,I) = LS (xNa ,I).

We first show that for each H such that xH ∈ NIa , xNa ∈ HI. Since xH ∈ NIa , H is a
potentially supporting context of Na. Let H =

dn
i=1 Ci

H , where Ci
H is A or ¬A. Since O+

w
is decisive, we have the following two cases:

– O+
w |= Na v Ci

H holds for all Ci
H , 1 ≤ i ≤ n, then O+

w |= Na v H. Since xNa ∈ NIa ,
xNa ∈ HI.

– There exists some i such that O+
w |= Na u Ci

H v ⊥, then O+
w |= Na u H v ⊥. By

Lemma 3 of paper [17], xH ∈ HI, which contradicts with our assumption xH ∈ NIa .

Next we prove LS (xNa ,I) ⊆ LS (xH ,I) by contradiction. Assume LS (xNa ,I) *
LS (xH ,I), let X be the concept in LS (xNa ,I)\LS (xH ,I) with the smallest order. Since
X ∈ LS (xNa ,I), there exists N ≺F X such thatO+

w ` Na v NtX and N∩LS (xNa ,I) = ∅.

∵ O+
w ` Na v N t X ∴ O+

w |= Na v N t X

∵ xH ∈ NIa ∧ xH < XI ∴ xH ∈ NI ∴ LS (xH ,I) ∩ N , ∅

In the above proof, if N = ⊥, a contradiction arises with xH ∈ NI. Otherwise, let Y ∈
LS (xH ,I)∩N, there must exist N′ ≺F Y s.t. O+

w ` H v N′ tY and LS (xH ,I)∩N′ = ∅.

∵ O+
w ` H v N′ t Y and xNa ∈ HI ∴ xNa ∈ (N′ t Y)I

∵ N′ ≺F Y and Y ∈ N and N ≺F X ∴ N′ ≺F X

Since X is the smallest in LS (xNa ,I) \ LS (xH ,I), N′ ≺F X and LS (xH ,I) ∩ N′ = ∅,
we have LS (xNa ,I) ∩ N′ = ∅ (it is trivially true if N′ = ⊥), and xNa < N′I. Given
xNa ∈ (N′ t Y)I, we have Y ∈ LS (xNa ,I), this contradicts with N ∩ LS (xNa ,I) = ∅. So
we conclude that LS (xNa ,I) \ LS (xH ,I) = ∅ and LS (xNa ,I) ⊆ LS (xH ,I).

Finally we need to prove LS (xH ,I) ⊆ LS (xNa ,I). For each X ∈ LS (xH ,I), there
exists N ≺F X such that O+

w ` H v N t X and N ∩ LS (xH ,I) = ∅.

∵ LS (xNa ,I) ⊆ LS (xH ,I) ∴ N ∩ LS (xNa ,I) = ∅ ∴ xNa < NI

14

∵ xNa ∈ HI ∧ xNa < NI ∴ xNa ∈ XI

Thus we conclude X ∈ LS (xNa ,I). �

Lemma 8 LetI be a model of anALCHO ontologyO satisfying Eu¬F, andE, F ∈ C>,⊥,
where L is a condensing label in I. Then I′ = condense(L, xL,I) is a model of
O ∪ {L ≡ {xL}} satisfying E u ¬F.

Proof. By the definition of condensing label, we have: (1) LI , ∅; (2) for all x ∈ LI,
LS (x,I) are the same. By (1) and the definition of r in condense(L, xL,I), we have
LI

′

= {xI
′

L }, so the axiom L ≡ {xL} is satisfied. By (2), we can further prove LS (x,I) =

LS (r(x),I′) holds for all x ∈ 4I. Next we need to prove I′ |= α from I |= α for any
axiom α in O. We do a case-by-case analysis for every possible form of α:

– α =
d

Ai v
⊔

B j Assume x′ ∈ (
d

Ai)I
′

, there exists x ∈ 4I s.t. x′ = r(x). Since
LS (x,I) = LS (x′,I′), we have x ∈ ∩iAIi , so x ∈ ∪ jBIj . Hence x′ ∈ (

⊔
B j)I

′

.
– α = A v ∃R.B Assume x′ ∈ AI

′

, there exists x such that x′ = r(x) and x ∈ AI.
Since I |= α, there exists y ∈ 4I s.t. (x, y) ∈ RI and y ∈ BI. So (x′, r(y)) ∈ RI

′

and
r(y) ∈ BI

′

. Hence x′ ∈ (∃R.B)I
′

.
– α = ∃R.A v B Assume x′ ∈ (∃R.A)I

′

, there exists y′ such that (x′, y′) ∈ RI
′

and
y′ ∈ AI

′

. So there exists (x, y) ∈ RI s.t. x′ = r(x) and y′ = r(y). Since r(y) ∈ AI
′

,
y ∈ AI. Because I |= α, x ∈ BI and thus x′ ∈ BI

′

.
– α = A v ∀R.B Assume x′, y′ ∈ 4I

′

s.t. (x′, y′) ∈ RI
′

and x′ ∈ AI
′

, there exists
x, y ∈ 4I s.t. x′ = r(x), y′ = r(y) and (x, y) ∈ RI. Since LS (x,I) = LS (x′,I′), we
have x ∈ AI. Because I |= α, y ∈ BI, hence y′ ∈ BI

′

.
– α = Na ≡ {a} By I |= α we have NIa = {aI}. According to the definition of the

function condense() we have NI
′

a = {r(aI)} = {aI
′

}.
– α = R v S If (x′, y′) ∈ RI

′

, there exists x, y ∈ 4I s.t. x′ = r(x), y′ = r(y) and
(x, y) ∈ RI. Since I |= α, (x, y) ∈ S I and so (x′, y′) ∈ S I

′

.

So I′ |= O∪{L = {xL}} holds. Assume x ∈ (Eu¬F)I, since LS (x,I) = LS (r(x),I′)
we know r(x) ∈ (E u ¬F)I

′

, so (E u ¬F)I
′

, ∅. �

Lemma 9 Given some O+
w and F ∈ C>,⊥, if in I[O+

w,≺F] every Na ∈ NP is a condensing
label, then for each E ∈ C>,⊥ s.t. O+

w 6|= E v F, there is a model of Oo satisfying Eu¬F.

Proof. Let {Li ≡ {xLi }}
n
i=1 be all nominal axioms in Oo. We prove I[O+

w,≺F], which
satisfies E u ¬F for each non-subclass E ∈ C>,⊥ of F, can be transformed to a model
In of On = O+

w ∪ {Li ≡ {xLi }}
n
i=1 such that (E u ¬F)In , ∅ by induction on n.

By assumption for n = 0, I0 = I[O+
w,≺F]. We need to show a model Ik of Ok satisfy-

ing E u ¬F can be transformed to a model Ik+1 of Ok+1 satisfying E u ¬F. This step is
proved by applying Lemma 8 where I = Ik, O = Ok, L = Lk and xL = xLk .

Then we have transformed the model I[O+
w,≺F] to a model In of On satisfying Eu¬F

where ‖NP‖ = n. Since On ⊇ Oo, we have In |= Oo and (E u ¬F)In , ∅. �

Definition 16 In a saturation SO+
w , the derivation path of a conclusion α of the form

H v M or H v N t ∃R.K is the sequence of all the inference steps IS1
H, . . . , IS

m
H in the

context H, where: (1) α ∈ ISm
H .conc, and (2) for any n < m, ISn

H occurs before ISn+1
H in

the saturation process.

15

Lemma 17 Given O+
w, a concept A ∈ C, and an axiom α ∈ SO+

w of the form H v M t A
or H v M t A t ∃R.K, then there exists a conjunct B of H such that B ∈ Pri[A,O+

w].

Proof. According to line 1 and 5 of Algorithm 2, A ∈ Pri[A,O+
w]. Let IS1

H, . . . , IS
m
H be

the derivation path of α. We prove the lemma by induction over m.
If m = 1, then IS1

H.rule is R+
A, and by the side condition of R+

A, A is a conjunct of
H. So the lemma holds where B = A ∈ Pri[A,O+

w]. Next we show the lemma holds when
m = k, if it holds for all m < k. Since α ∈ SO+

w , there must exist some step ISp
H such

that A is a disjunct of the axiom in the conclusion but not in the premise. In this case,
ISp

H.rule can only be R+
A, Rn

u or R−
∃
, so we can perform a case analysis as follows.

Case 1 Similarly to the case m = 1, we can choose B = A to prove the lemma.
Case 2 ISp

H.rule=Rn
u In this case ISp

H.sc has a single axiom α of the form
d

Ai v
⊔

B j.
By line 7 there exists some Ai s.t. Ai ∈ Pri[A,O+

w]. Since H v Ni t Ai ∈ ISp
H.prem,

its derivation path IS1
H, . . . , IS

p′

H must satisfy p′ < p ≤ k. By applying the in-
ductive hypothesis to m = p′ and H v Ni t Ai, there exists H’s conjunct B s.t.
B ∈ Pri[Ai,O

+
w]. Since Ai ∈ Pri[A,O+

w], according to the Algorithm 2, we can see that
Pri[Ai,O

+
w] ⊆ Pri[A,O+

w]. So B ∈ Pri[A,O+
w], and the lemma is proved.

Case 3 ISp
H.rule=R−

∃
In this case ISp

H.sc has axioms of the forms R v∗
O

S and ∃S .Y v A,
and one of the premises ISp

H.prem is of the form H v M′ t∃R.(
dn

i=1 Ci
K′), which is

derived by the process:

H v M1tA′
R+
∃

−−−−−−−−→
A′v∃R.C1

K′

H v M1 t ∃R.C1
K′ ···

R∀/R−∃
−−−−−−−−−−−−−−−−→
Rv∗
O

S Yv∀S .Z/∃S .ZvY
H v M′ t ∃R.(

nl

i=1

Ci
K′)

The first inference step has a side condition of the form A′ v ∃R.C1
K′ and a premise

of the form H v M1 t A′. By line 8 to 9, A′ is added to Pri[A,O+
w] where W = A

and Z = C1
K′ . Let IS1

H, . . . , IS
p′

H be the derivation path of H v M1 t A′. We can see
p′ < k since H v M1 t A′ must be derived before the kth step. By the inductive
hypothesis, there exists H’s conjunct B s.t. B ∈ Pri[A′,O+

w]. Since A′ ∈ Pri[A,O+
w],

Pri[A′,O+
w] ⊆ Pri[A,O+

w]. So B ∈ Pri[A,O+
w], and the lemma is proved. �

Lemma 13 Given O+
w and a concept A, OPS[A,O+

w] returned by Algorithm 2 preserves
OPS[A,O+

w] ⊇ PS[A,O+
w].

Proof. By Lemma 17, we have shown that there is at least one conjunct B of H in
Pri[A,O+

w]. Since H’s conjuncts are all collected during the derivation of init(H), we dis-
cuss the two cases how init(H) is derived, and how H’s conjuncts are added in each
case:

– If init(H) is introduced at initialization stage, then B is the only conjunct in H be-
longing to C>,⊥ or NP, and is added to OPS[A,O+

w] in line 11 of Algorithm 2 where
W = B and U = C>,⊥.

– If init(H) is introduced by Rinit rule, then there is a premise of the form H∗ v
Mt∃R.H, where H∗ is a context different from H. Let H =

dn
i=1 Ci

H , the derivation
process of H∗ v M t ∃R.H is:

H∗ v M1tA
R+
∃

−−−−−−−→
Av∃R.C1

H

H∗ v M1 t ∃R.C1
H ···

R∀/R−∃
−−−−−−−−−−−−−−−−→
Rv∗
O

S Yv∀S .Z/∃S .ZvY
H∗ v M t ∃R.(

nl

i=1

Ci
H)

16

The side condition of the first step is A v ∃R.C1
H . We first prove ∃R.C1

H ∈ Exists,
where Exists is the set produced in the loop from lines 10 to 13. If B is C1

H , then
∃R.C1

H is added to Exists in line 13 where W = B. If B is a conjunct of H other
than C1

H , then B becomes a conjunct after an application of R∀ rule, in such case
the side condition is R v∗

O
S and Y v ∀S .B, so ∃R.C1

H is added to Exists in line 12
where W = B.
Next we show the lemma holds for all three types of conjuncts C of H:
1. If C is added to the conjuncts of H by R+

∃
rule, then C = C1

H and is added to
OPS[A,O+

w] in line 15.
2. If C is added to the conjuncts of H by R∀ rule, then C is added to OPS[A,O+

w] in
line 16.

3. If C is added to the conjuncts of H by R−
∃

rule, then C is of the form ¬Z, and Z
is added to OPS[A,O+

w] in line 17.

Hence the lemma is proved. �

Theorem 14 Let O+ be strengthening axioms computed from Algorithm 3, the ontology
O+

w = Ow ∪ O
+ is decisive.

Proof. Since in the last round of the loopOn+ = On−1+, we know that for each Na ∈ NP
and X ∈ OPS[Na,O

n+
w] = OPS[Na,O

n−1+
w], chooseStrAxiom(Na, X) ⊆ On+ ⊆ On+

w . And
because PS[Na,O

n+
w] ⊆ OPS[Na,O

n+
w], thus O+

w = On+
w is decisive.

Theorem 15 Let O+ be strengthening axioms computed from Algorithm 4, the ontology
O+

w = Ow ∪ O
+ is decisive.

Proof. For each Na ∈ NP, we write gNa for the final group that Na belongs to after
executing lines 6 to 7 of Algorithm 4. We will prove that OPS[Na,O

+
w] ⊆ gNa .ops. From

lines 10 to 17 of Algorithm 2, we can see that each concept X is added to OPS[Na,O
+
w]

because of some W ∈ Pri[Na,O
+
w] in line 10, for which we write WX . And according to the

loop in lines 2 to 9, WX is added to Pri[Na,O
+
w] through a search path Na = W0 → W1 →

. . .Wn = WX , where Wi−1 → Wi, 1 ≤ i ≤ n represents Wi is added to ToProcess while
processing Wi−1 in the loop where W = Wi−1. Note that in Algorithm 2, the only case
that a strengthening axiom α ∈ O+ is used is when α is of the form Nb v X′ and used in
line 7. Let W s be the set of Wi such that Wi is added into ToProcess from W = Wi−1 in
line 7 using such a strengthening axiom α = Nb v X′. We prove the lemma by induction
over the size m = ‖W s‖ of W s. The inductive hypothesis is:

For each X ∈ OPS[Na,O
+
w] and Na ∈ NP, let WX ∈ Pri[Na,O

+
w] be the concept

that causes X to be added into OPS[Na,O
+
w], Na = W0 → W1 → . . .Wn = WX

be the search path of WX , and W s′ be the set of Wi such that Wi−1 → Wi uses
a strengthening axiom. If ‖W s′‖ < m then X ∈ gNa .ops.

– m = 0 In this case WX ∈ Pri[Na,Ow] and X ∈ OPS[Na,Ow]. By line 4 we see X is in
the initial group of Na, and is merged into gNa .ops while executing lines 6 to 7.

17

– m = k Let im = min{i | Wi ∈ W s}. In this case we have Wim−1 = X′ and Wim = Nb.
It is easy to see that X is also added to OPS[Nb,O

+
w] through the same WX and a

search path Nb = Wim → . . .Wn = WX , whose ‖W s′‖ is k − 1. By applying the
inductive hypothesis to X and Nb, we know X ∈ gNb .ops. And since X′ ∈ Pri[Na,Ow],
X′ ∈ gNa .pri. So gNa .pri ∩ gNb .ops , ∅, and gNa and gNb must be the same group
according to the merge criteria in line 6 of Algorithm 4. So X ∈ gNb .ops = gNa .ops.

Hence PS[Na,O
+
w] ⊆ OPS[Na,O

+
w] ⊆ gNa .ops for each Na ∈ NP in O+

w. According to the
construction of O+ in line 11 of Algorithm 4, we conclude O+

w = Ow ∪ O
+ is decisive.

C Evaluation Results

We have implemented our prototype hybrid reasoner WSClassifier in Java using OWL
API. The reasoner uses ConDOR r.12 as the main ALCH reasoner and HermiT 1.3.6
as the assistant reasoner for DL ALCHO. WSClassifier adopts a well-known prepro-
cessing step to eliminate transitive roles [10], hence supports DL SHO (ALCHO+

transitivity axioms). We compared the classification time of WSClassifier with tableau-
based reasoners HermiT 1.3.6, Fact++ 1.5.3 and Pellet 2.3.0, as well as another hybrid
reasoner MORe 0.1.3 which combines ELK and HermiT. All the experiments were run
on a laptop with an Intel Core i7-2670QM 2.20GHz quad core CPU and 16GB RAM
running Java 1.6 under Windows 7. We set the Java heap space to 12GB and the time
limit to 9 days for all reasoners. For HermiT, we set its configuration to simple core
blocking and individual reuse which is optimized configuration for running the large
and complex ontologies.

We evaluated WSClassifier and other reasoners on all large and complex ontologies
available to us, on the ORE dataset and on some proposed variants. The only large and
complex ontologies included are FMA-constitutionalPartForNS(FMA-C)1 and modi-
fied versions of Galen in which some concepts starting with a lower case letter and
subsumed by SymbolicValueType are modeled as nominals. The ontologies contain-
ing “EL” in the name are constructed based on Galen-EL2. Galen-EL-n1Y and Galen-
EL-n2Y were provided [12]. Galen-Heart-n1 and Galen-Heart-n2 are subontologies,
respectively. Galen-EL-n1YE and Galen-EL-n2YE have some nominals removed and
Galen-Union-n is made by adding disjunctions of nominals. We used two common s-
maller complex ontologies – Wine and DOLCE. We use the ORE dataset,3 where 2
ontologies without axioms are removed. In all cases, we reduce the language to SHO.
The ontologies are available from our website.4.

For FMA-C which is the only real-world large and complex ontologies with nom-
inals we have access to, WSClassifier finished classification in 21.2 seconds, while
HermiT used 140,882 seconds. Other reasoners did not finish classification on it in 9
days. From the results of Table 2 we can see, excluding ORE dataset, WSClassifier is
significantly faster than the tableau-based reasoners on 7 out of 10 ontologies. For the

1 Foundational Model of Anatomy, http://sig.biostr.washington.edu/projects/fm/index.html
2 http://code.google.com/p/condor-reasoner/downloads/list
3 http://www.cs.ox.ac.uk/isg/conferences/ORE2012/
4 http://isel.cs.unb.ca/˜wsong/WSClassifierExperimentOntologies.zip

18

http://isel.cs.unb.ca/~wsong/WSClassifierExperimentOntologies.zip

Table 2. Comparison of classification performance

Ontology Concepts Nominals (Hyper) tableau Hybrid
HermiT Pellet FaCT++ MORe WSClassifier

Wine 146 206 24.6 285.6 4.6 1.0 28.7

DOLCE 207 39 6.6 7.0 15.6 53.3 1.3

Galen-Heart-n1 3366 55 264.0 – – 337,505 4.1

Galen-Heart-n2 3366 92 768.4 – – 338,453 1.8

Galen-EL-n1Y 23136 739 701,822.0 – – – 700,985.0

Galen-EL-n2Y 23136 1113 407,427.0 – – – 408,188.0

Galen-EL-n1YE 23136 598 244,146.0 – – – 17.0

Galen-EL-n2YE 23136 712 289,637.0 – – – 25,630.0

Galen-Union-n 23136 598 469,274.3 – – – 21.1

FMA-C 41648 85 140,882.0 – – – 21.2

ORE-dataset (OWL DL & EL,113 ontologies) the following refers to average number

FMA-lite 75,141 0 137,409.0 – – – 26.0

remaining 112 ontologies 4293 343 0.84 0.86 –∗ 0.24 2.10
Note: The time is measured in seconds. “–” means out of time or memory
∗: Fact++ terminates unexpectedly while classifying some ontologies in the ORE-dataset

other 3 of 10 ontologies – Wine, Galen-EL-YN1 and Galen-EL-YN2, WSClassifier, in-
curring a relatively small cost, detected that strengthening axioms made some concepts
unsatisfiable in Os, and so failed over to HermiT.

We see a major speedup for WSClassifier on ORE’s FMA-lite. On the remaining
112 ORE ontologies, our average reasoning time is longer than other reasoners. Among
these ontologies, 51 have nominals, mostly coming from ABoxes, and only 9 of them
have strengthening axioms. Of the 9 ontologies, 8 did not produce any new subsump-
tions in Hs and only 1 which is the variant of Wine ontology introduced new unsatis-
fiable concepts and fails over to HermiT. Thus the WS approach does not incur much
additional work, and most of the additional time is taken on overheads: computing nor-
malized and strengthening axioms, and transmitting the ontology to and from ConDOR,
which is necessary since ConDOR cannot be accessed directly through OWL API and
consumes about 60% of the time.

WSClassifier outperforms MORe on DOLCE and all the Galen ontologies. For the
Galen ontologies, MORe assigns all the classification work to a default configured
HermiT; fine-tuning may improve its times. However, MORe computes only subsump-
tions implied by the TBox, ignoring the ABox, thus its classification result is incomplete
for some ontologies with ABoxes, such as Wine.

WSClassifier seems most applicable when the ontologies are large and highly cyclic
since then tableau reasoners construct large models and employ expensive blocking
strategies. On the other hand consequence-based reasoners do not encounter problems
on highly cyclic ontologies, and so can classify even cyclic Ow and Os quickly. If there
are no or just a few additional subsumptions derived by Os, AR does not need or just do

19

a little work on the highly cyclic Oo. This improvement is observed for FMA-C which
is the only real-world large and complex ontology with nominals we have access to.

20

	 Complete Classification of Complex ALCHO Ontologies using a Hybrid Reasoning Approach

