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Abstract. Rough Description Logics (DLs) have been studied as a means
for representing and reasoning with imprecise knowledge. It has been
shown that reasoning in rough DLs can be reduced to reasoning in a
classical DL that allows value restrictions, and transitive and inverse
roles. This shows that for propositionally closed DLs, the complexity of
reasoning is not increased by the inclusion of rough constructors. How-
ever, applying such a reduction to rough EL yields an exponential time
upper bound. We show that this blow-up in complexity can be avoided,
providing a polynomial-time completion-based algorithm for classifying
rough EL ontologies.

1 Introduction

Description Logics (DLs) [3] are a family of knowledge representation formalisms
designed for expressing terminological knowledge in an unambiguous and well-
understood manner. They have been successfully applied to model and reason
with real-world knowledge domains, but possibly its biggest success so far is the
designation of the DL-based language OWL as the standard ontology language
for the semantic web, by the W3C.3

The DL EL is a light-weight logic that allows only for conjunction and ex-
istential restrictions as constructors. As it cannot express negations, EL is not
propositionally closed. Despite its low expressivity, this logic and small exten-
sions of it have been successfully used for representing knowledge from several
domains, most prominently from the medical and biological fields. In fact, EL is
the basic logic underlying large-scale ontologies like Snomed CT4 or the Gene
Ontology.5 A prominent feature of this logic is its polynomial-time complexity of
reasoning, which enables effective reasoning procedures. In fact, Snomed CT,
which has approximately 300,000 axioms, can be classified by modern reasoners
in less than seven seconds [15].

? Partly supported by DFG within the Cluster of Excellence ‘cfAED’.
3 http://www.w3.org/TR/owl2-overview/
4 http://www.ihtsdo.org/snomed-ct/
5 http://www.geneontology.org



In its classical form EL, as all other classical DLs, lacks the capacity of
modelling and reasoning with imprecise knowledge. This is in no way a small
drawback, as imprecision is almost unavoidable in several knowledge domains,
like those from the bio-medical fields. For example, even the notion of species, one
of the mayor taxonomic ranks from biological classification is far from precise,
or even being well-understood. Consider for instance the case of the Ensatina
salamanders from North America. When seen independently, the Monterey En-
satina and the Large Blotched Ensatina form two different species, with their own
characteristic traits; they can be easily distinguished as the former is completely
brown in color, while the latter is black with large yellow blotches. However,
there also exists a group of intermediate individuals, that mix the traits of both
species, forming a gradual bridge between them; e.g., dark brown with lighter-
brown blotches. It is not clear at which point these intermediate individuals stop
being members of one species and start belonging to the other. Indeed, provid-
ing a satisfactory notion of when two individuals belong to the same species is
a prominent open problem in biology [12].

The best-known approach for handling imprecision formally is through fuzzy
logic [13]. Fuzzy extensions of DLs have been thoroughly studied during the last
decade as a formalism for representing vague terminological knowledge [18,22].
However, it was recently shown that reasoning in expressive fuzzy DLs is either
undecidable [6,10], or crisp, with truth degrees playing no role whatsoever [5].
Even for the inexpressive DL EL, the extension to general fuzzy set based se-
mantics usually yields intractable reasoning problems [7,9]. It can be argued that
these negative complexity results arise from the high level of granularity provided
by fuzzy semantics, where every number from the interval [0, 1] can be used as a
truth degree. In other words, it is possible to make arbitrarily small distinctions
between elements of the domain. One can partially alleviate this problem by
restricting to finitely many truth degrees [4,8]. In this case, the resources needed
for reasoning are directly correlated with the size of the truth value space. This
idea, however, adds the burden of deciding a priori the amount of degrees that
will be needed and their relevant operations. It is thus desirable to obtain an
intermediate formalism that allows for imprecise limitations of concepts, while
avoiding the level of detail of fuzzy logics.

Rough sets were introduced in [19] as an alternative to fuzzy set theory [25]
for dealing with imprecise notions. The main idea behind this formalism is to
describe imprecise sets by allowing a class of boundary elements that can neither
be stated to belong, nor to be outside, the set. More precisely, a set X without a
clear distinction on its limits, is approximated using a set X of elements that are
guaranteed to belong to X, and a set X of elements that might be members of
X; this latter set is called the upper approximation of X. These sets are formally
defined with the help of an indiscernibility relation that clusters together indi-
viduals sharing the same properties. The difference X \X is the set of boundary
elements, which cannot be ensured to belong to X, nor to its complement.

For example, the problem with the different species of Ensatina salamanders
can be solved by stating that the intermediate individuals belong to the upper



bounds of the sets of both species. This representation allows us to state prop-
erties of the intermediate individuals (e.g. that they have mixed traits from the
border species) without providing a clear-cut division of these individuals into
the two species.6

Although the combination of rough set theory with DLs is far from new
(see e.g. [17] for some early work), interest in it has grown in the last few
years [11,14,16,21]. Most of the work in this direction so far focuses on rough
extensions of expressive DLs. The approach is to extend a description logic with
two new constructors that describe the upper and lower approximations of con-
cepts. The semantics of these constructors are based on equivalence relations that
provide the indiscernibility relation from rough set theory. In [21] it was shown
that these constructors can be modelled in classical DLs with the help of existen-
tial and value restrictions over a new transitive, symmetric and reflexive role ρ.
Briefly, the role ρ describes the indiscernibility relation, and the value and exis-
tential restrictions can be used to describe the lower and upper approximations,
respectively. This construction is useful for showing that the rough constructors
do not increase the complexity of standard reasoning for sufficiently expressive
DLs.

The reduction from [21], when applied to rough EL, requires to extend the
set of constructors to include value restrictions and inverse roles, among others.
The extensions of EL with any of these constructors are known to be ExpTime-
complete [1,2]. Thus, this approach yields an exponential-time upper bound for
reasoning in rough EL, in contrast to the polynomial-time complexity for classical
EL. In this paper we show that subsumption in rough EL is in fact PTime-
complete, matching the known complexity for its classical logic.

The paper is divided as follows. We first provide a very brief introduction to
the theory of rough sets, which will be useful for defining the syntax and seman-
tics of rough EL in Section 3, where we also prove some basic properties of this
logic. In Section 4, we describe a completion-based algorithm for deciding sub-
sumption of rough EL concepts. As an added benefit, we obtain that classifying
the full ontology needs only polynomial time.

2 Rough Sets

Rough sets were introduced in [19] as an alternative to fuzzy set theory [25] for
dealing with imprecise notions. The main motivation in this formalism is to be
able to approximate terms that defy a precise characterisation, with the help
of an equivalence relation ∼, called the indiscernibility relation. Formally, the
equivalence relation ∼ divides the universe into its equivalence classes, which
form clusters, or granules of indiscernible elements. As usual, we will denote the
equivalence class of an element x w.r.t. the relation ∼ by [x]∼. Intuitively, ele-
ments belonging to the same equivalence class cannot be distinguished through
their perceivable characteristics, and hence cannot be divided by any given set.

6 This description is not intended to provide a general solution of the species-problem.



Rough sets are also sometimes called granular sets in the literature and are one
of the bases for granular computing [24].

Given a set X and an equivalence relation ∼, we can define its best lower
approximation, denoted by X, as the greatest union of equivalence classes con-
tained in X; i.e., X :=

⋃
[x]∼⊆X [x]∼. Likewise, its best upper approximation

is the union of the equivalence classes of all elements of X; X :=
⋃

x∈X [x]∼.
Equivalently, we have

X = {x | [x]∼ ⊆ X}, X = {x | [x]∼ ∩X 6= ∅}.

The elements in X are those that can be clearly distinguished from any
element not belonging to X, and hence are said to surely belong to X. The
members of X, on the other hand, are those indistinguishable from some element
of X, and said to possibly belong to X. The elements in the boundary X \X of
X are those for which the notion of belonging to X cannot be made precise, as
they are indistinguishable from both, some members of X and some members of
the complement of X.

From an informal point of view, it is possible to see rough sets as a three-
valued membership function, where members of X strongly belong to X, the
boundary elements weakly belong to X, and those in the complement of X do not
belong toX. However, this description is overly simplistic, as the three-valued se-
mantics are incapable of fully characterising the properties of the indiscernibility
relation. In particular, the desired properties relating a three-valued conjunction
with its three-valued implication are not satisfied by rough set conjunction and
inclusion.

In the next section, we describe the combination of the description logic
EL with the lower and upper-approximation constructors, whose semantics is
based on rough sets. Afterwards, we describe a completion algorithm for deciding
(classical) subsumption between rough EL concepts.

3 Rough EL

The logic rough EL extends classical EL by allowing the lower approximation
and upper approximation constructors · and · for expressing rough concepts.
Formally, from two disjoint sets NC and NR of concept and role names, rough EL
concepts are constructed using the following syntactic rule:

C ::= A | C1 u C2 | ∃r.C | C | C | >,

where A ∈ NC and r ∈ NR.
The semantics of this logic is based on interpretations that map concept

names to subsets of a non-empty domain ∆, and role names to binary rela-
tions over ∆. To handle the rough concept constructors, these interpretations
additionally have an indiscernibility (equivalence) relation.

Definition 1. A rough interpretation is a tuple I = (∆I , ·I ,∼I), where ∆I is
a non-empty set called the domain, ∼I is an equivalence relation on ∆I , called



the indiscernibility relation, and ·I is the interpretation function mapping every
concept name A to a subset AI ⊆ ∆I , and every role name r to a binary relation
rI ⊆ ∆I ×∆I .

The interpretation function ·I is extended to general rough EL concepts by
setting:

– (C1 u C2)
I = CI1 ∩ CI2 ,

– (∃r.C)I = {x ∈ ∆I | ∃y ∈ ∆I . (x, y) ∈ rI ∧ y ∈ CI},
– C

I
= {x ∈ ∆I | [x]∼I ∩ CI 6= ∅},

– CI = {x ∈ ∆I | [x]∼I ⊆ CI}, and
– >I = ∆I .

Intuitively, the indiscernibility relation groups the individuals of the domain
that cannot be distinguished from each other, at the considered level of detail.
The upper approximation C of a given concept C describes those individuals
that cannot be excluded from belonging to C, as they are indistinguishable from
some element belonging to this concept. Dually, the individuals C are those
that are discernible from every individual not belonging to C. Clearly, for every
interpretation I and concept C it holds that CI ⊆ C

I
. The borderline cases,

those elements of C
I \ CI , cannot be ensured to be, nor excluded from being

instances of C.
The domain knowledge is described using a TBox : a finite set of GCIs of the

form C v D, where C,D are rough EL concepts. The interpretation I satisfies
the GCI C v D if and only if CI ⊆ DI holds. I is a model of the TBox T if it
satisfies all the GCIs in T .

As is the case for classical EL, every rough EL TBox is consistent. Indeed,
the interpretation I = ({x}, ·I , {(x, x)}), where AI = {x} and rI = {(x, x)}
for all A ∈ NC and all r ∈ NR satisfies every GCI, and hence is a model of
every TBox. For that reason, we focus on the problem of deciding subsumption
between concept names, and the more general problem of classifying the TBox.

Definition 2. Let T be a TBox and C,D two rough EL concepts. We say that
C is subsumed by D w.r.t. T , denoted by C vT D, if for every model I of T it
holds that CI ⊆ DI . Classification is the problem of deciding, for every pair of
concept names A,B, whether A vT B holds or not.

Example 3. Consider once again the Ensatina salamanders. We can describe the
class of intermediate ensatina salamanders as those that cannot be excluded
from being Monterey Ensatina, nor from being Large Blotched Ensatina, by the
axiom

IntermediateE v MontereyE u LargeBlotchedE.

We can also state that Large Blotched Ensatinas can be recognized by the
blotches on their skin.

LargeBlotchedE v ∃hasFeature.Blotches.



From these two axioms, it is possible to deduce that intermediate ensatina sala-
manders are indistinguishable from some salamanders with skin blotches; i.e.,

IntermediateE vT ∃hasFeature.Blotches.

This conclusion gives us some information about the intermediate salamanders,
despite being unable to clearly state whether they are Large Blotched Ensatinas
or not.

As shown in [21], reasoning in rough DLs can be reduced to reasoning in a
classical DL that allows value restrictions, inverse, and reflexive roles, and role
inclusion axioms. Let ρ be a new role that does not appear in T . If we restrict
ρ to be reflexive, and include the role inclusion axioms ρ ◦ ρ v ρ (transitivity),
and ρ−1 v ρ (symmetry), then the concepts C and C are equivalent to the
concepts ∃ρ.C and ∀ρ.C, respectively (see [21] for full details). However, it is well
known that extensions of classical EL with either value restrictions or inverse
roles are already intractable; in fact reasoning in these extensions is ExpTime-
hard [1,2,23]. Applying this reduction directly yields an ExpTime upper bound
for the complexity of deciding subsumption of rough EL concepts. On the other
hand, only one role name, namely ρ, is used in any of the possibly expensive
constructors introduced by this reduction. As we will see in the following section,
this limited use does help in improving the complexity, as the problem of deciding
subsumption between rough EL concepts is in fact decidable in polynomial time.

Clearly, the subsumption relation vT is transitive; that is, if C vT D and
D vT E, then also C vT E holds. Due to the properties of lower and upper ap-
proximations, some additional subsumption relations, which are not necessarily
obvious at first sight, can sometimes be deduced, as shown next.

Theorem 4. Let C,D,E be rough EL concepts. The following properties hold:

1. C vT D iff C vT D
2. if C vT D and D vT E, then C vT E
3. if C vT D and D vT E, then C vT E

Proof. Let I = (∆I , ·I ,∼I) be a model of T , and x ∈ ∆I .

1. (⇐) If x ∈ CI , then there exists a y ∈ [x]∼I ∩ CI . By assumption, y ∈ DI .
Thus, x ∈ [y]∼I ⊆ DI .
(⇒) Let x ∈ CI . We must prove that [x]∼I ⊆ DI . Let y ∼I x. Then, y ∈ C

I
,

and thus, by assumption, y ∈ DI .
2. Let x ∈ CI . By assumption, we know that there exists z ∈ [x]∼I ∩DI , and

thus z ∈ EI ; i.e., [x]∼I = [z]∼I ⊆ EI . Hence x ∈ E
I .

3. If x ∈ CI , then by assumption it holds that [x]∼I ⊆ DI . Let y ∼I x. Then
[y]∼I = [x]∼I ⊆ DI , and hence y ∈ DI , and by assumption y ∈ EI . �

In the following section we will exploit these properties to build a completion-
based algorithm that classifies a TBox and can be used to decide which subsump-
tion relations hold.



NF1 A u C v E −→ {C v X,A uX v E}
NF2 ∃r.C v E −→ {C v X, ∃r.X v E}
NF3 C v E −→ {C v X,X v E}
NF4 C v E −→ {C v E}
NF5 C v D −→ {C v X,X v D}
NF6 A v E u F −→ {A v E,A v F}
NF7 A v ∃r.C −→ {A v ∃r.X,X v C}
NF8 A v C −→ {A v X,X v C}
NF9 A v C −→ {A v X,X v C}

Table 1. Normalisation rules, where A ∈ BC, C,D /∈ BC and X is a new concept name

4 A Completion Algorithm

In this section we describe an algorithm for deciding subsumption relations be-
tween concepts. To simplify the description, we will focus solely on subsumption
between concept names. Notice that subsumption between complex rough EL
concepts C,D can be reduced to this problem by adding the two axioms A v C
and D v B, where A,B are two new concept names, to T and then deciding
whether A vT B holds. Thus, restricting to concept name subsumption results
in no loss of generality (see [1] for details).

As a preprocessing step for the algorithm, we transform the TBox into an
adequate normal form. We define the set of basic concepts as BC := NC ∪ {>};
i.e., all concept names and the top concept are basic concepts. The TBox T is
in normal form, if all its axioms are of one of the following forms:

A v ∃r.B, ∃r.A v B, A uA′ v B, A v B, A v B, or A v B, 7

where A,A′, B ∈ BC and r ∈ NR. The normalisation rules shown in Table 1 can
be used to transform any TBox T into a TBox in normal form that preserves all
the subsumption relations from T . It is possible to show that these normalisation
rules yield a normalised TBox in linear time. Notice in particular rule NF4,
which takes advantage of the first property described in Theorem 4.

Our completion algorithm extends the methods described in [1] to appro-
priately handle the lower and upper approximations of concepts. The idea is to
store the information of the subsumption relations using a collection of com-
pletion sets. The main difference with the classical approach is that we need
to maintain special completion sets for the lower and upper approximations, in
order to handle the special properties of these constructors.

The algorithm uses as data structure a family of completion sets. For each ba-
sic conceptA appearing in the TBox T , we store three completion sets S(A), S(A),
and S(A), and additionally a completion set S(A, r) for every role name r ap-
pearing in T . The members of the completion sets are all basic concepts. These
7 To simplify the description, we use the expression >uA v B to represent axioms of
the form A v B.



cr1 if B1 ∈ S(A), B2 ∈ S(A), and B1 uB2 v C ∈ T , then add C to S(A)

cr2 if B ∈ S(A) and B v ∃r.C ∈ T , then add C to S(A, r)

cr3 if B ∈ S(A, r), C ∈ S(B), and ∃r.C v D ∈ T , then add D to S(A)

cr4 if B1 ∈ S(A), B2 ∈ S(A), and B1 uB2 v C ∈ T , then add C to S(A)

cr5 if B1 ∈ S(A), B2 ∈ S(A), and B1 uB2 v C ∈ T , then add C to S(A)

cr6 if B ∈ S(A) and B v C ∈ T , then add C to S(A)

cr7 if B ∈ S(A), and B v C ∈ T , then add C to S(A)

cr8 if B ∈ S(A), and B v C ∈ T , then add C to S(A)

cr9 if B ∈ S(A) then add B to S(A)

cr10 if B ∈ S(A) then add B to S(A)

cr11 if B ∈ S(A) and C ∈ S(B) then add C to S(A)

cr12 if B ∈ S(A) and C ∈ S(B) then add C to S(A)

cr13 if B ∈ S(A) and C ∈ S(B) then add C to S(A)

Table 2. Completion rules for rough EL

sets will maintain the following four invariants during the whole execution of the
algorithm:

i1 if B ∈ S(A), then A vT B
i2 if B ∈ S(A), then A vT B
i3 if B ∈ S(A), then A vT B
i4 if B ∈ S(A, r), then A vT ∃r.B.

The completion sets are initialised as

S(A) = S(A) := {A,>}, S(A) := {>}, S(A, r) := ∅

for basic concepts A and role names r. Obviously, this initialisation preserves the
invariants described above. The completion rules from Table 2 are then applied
to extend these sets. To ensure termination, a rule is only applied if it adds new
information; that is, if the basic concepts to be added to the completion sets by
such rule application are not already in them. These rules are applied until the
completion sets are saturated ; i.e., until no rule is applicable anymore. We first
show that this procedure terminates in polynomial time.

Lemma 5. The rules from Table 2 can only be applied a polynomial number of
times, and each rule application needs polynomial time.

Proof. Each of the completion sets contains only concept names that appear
in T and (possibly) >. Thus, the size of each of these sets is linear on T . For
each concept name in T there are three such completion sets, plus one addi-
tional completion set for each role name. Thus, the number of completion sets is



quadratic on the size of T . Each rule application adds one concept name to one
completion set, and never removes any. This means that there can be at most
polynomially many rule applications, before no new concept name can be added
to any completion set.

For testing the pre-condition of a rule application, we can simply explore all
the completion sets, at most twice, and the set of axioms T . This exploration
needs in total polynomial time. ut

When the algorithm terminates, we can read all the subsumption relations
between concept names appearing in the TBox T , by simply considering the
elements appearing in the subsumption sets. More precisely, the subsumption
relation A vT B holds iff B ∈ S(A). We show first that the method is sound, by
showing that rule applications preserve the invariants i1 to i4 described before.

Lemma 6. The invariants i1 to i4 are preserved through all rule applications.

Proof. As said before, the invariants are satisfied by the initialisation of the
completion sets. Soundness of the first three rules has been shown in [1]. For
the remaining rules, we take advantage of the properties of rough concepts.
Recall that for every concept name A, it holds that A vT A vT A. This shows
soundness of the rules cr9 and cr10.

For the rule cr4, let A vT B1 and A vT B2. Then for every interpretation
I and every x ∈ I if x ∈ AI , then [x]∼I ⊆ BI1 ∩ BI2 . Thus, [x]∼I ⊆ CI , which
implies that A v C. Rule cr5 can be treated analogously.

Soundness of the remaining rules is a direct consequence of Theorem 4. ut

It remains only to show completeness; i.e., that once the algorithm has ter-
minated, all the subsumption relations are explicitly stated in the completion
sets. As usual, this is shown by building a canonical model that serves as a coun-
termodel for all the subsumption relations between concept names that do not
appear in the completion sets. The main idea is to have one individual for each
concept name C appearing in T ; the interpretation will include this individual
in every basic concept D that subsumes C w.r.t. T . However, we need to create
additional auxiliary individuals to correctly deal with the upper and lower ap-
proximations of each of these concept names. We thus add an element Cu that
will be interpreted to belong to all concept names D such that D subsumes C.
For dealing with the upper approximations, the construction is slightly more
complex, as different elements might be needed to witness the existence of an
indiscernible element belonging to different concept names. For every concept
name D such that D subsumes C, we create an element CD that will belong to
D, as well as all (named) subsumers of D. Intuitively, this element CD will be
the witness for C to be a member of D. Obviously, all the elements of the form
CD will be interpreted to belong to the same equivalence class as C and Cu. We
formalize these ideas next.

Lemma 7. Let A,B be two concept names appearing in T , and S(A) the com-
pletion set obtained after the application of the completion rules has terminated.
If B /∈ S(A), then A 6vT B.



Proof. We need to build a model I of T such that AI 6⊆ BI . We start by defining
the domain

∆I := {C,Cu, CD | C,D are concept names appearing in T }.

The equivalence relation ∼I is the transitive, reflexive and symmetric closure
of {(C,Cu), (C,CD) | C,D ∈ NC appear in T }; thus, the equivalence class of a
concept name C is [C]∼I := {C,Cu, CD | D ∈ NC appears in T }. It remains
only to define the interpretation function ·I . For a concept name C, we set

CI := {D | C ∈ S(D)} ∪ {Du | C ∈ S(D)} ∪
{DX | C ∈ S(X), X ∈ S(D)} ∪ {DX | C ∈ S(D), X ∈ NC},

and for a role name r

rI := {(C,D) | D ∈ S(C, r)} ∪ {(Cu, D) | D ∈ S(X, r), X ∈ S(C)} ∪
{(CX , D) | D ∈ S(X, r), X ∈ S(C)} ∪
{(CX , D) | D ∈ S(Y, r), Y ∈ S(C), X ∈ NC}.

Clearly, for the interpretation I = (∆I , ·I ,∼I) it holds that A ∈ AI but
A /∈ BI . It only remains to be shown that I is indeed a model of T . We analyse
the different cases, depending on the form of the axiom.
[C v D] Let x ∈ CI , then [x]∼I ⊆ CI . Let E be the concept name such that
[E]∼I = [x]∼I . Then Eu ∈ CI . By definition, this means that C ∈ S(E). Since
the rule cr6 is not applicable, D ∈ S(E), and by rule cr9, D ∈ S(E). Let now
EF ∈ [E]∼I . Since D ∈ S(E), by definition EF ∈ DI . Thus, x ∈ [E]∼I ⊆ DI .

[C v D] Let x ∈ CI and [x]∼I = [E]∼I . By definition and the rules cr9, cr10,
and cr12, it holds that C ∈ S(E). By rule cr7, it then follows that D ∈ S(E)
and hence also D ∈ S(E) ∩ S(E). This implies that [x]∼I = [E]∼I ⊆ DI , and
thus x ∈ DI .

[C v D] Let x ∈ CI and [x]∼I = [E]∼I . As before, from rules cr9, cr10, and
cr12, we derive that C ∈ S(E), and from rule cr8 it follows that D ∈ S(E).
Thus, ED ∈ DI . Since ED ∈ [x]∼I , it follows that [x]∼I ∩ DI 6= ∅, and hence
x ∈ D.

The cases for the axioms that do not use rough concepts can be shown anal-
ogously, following the arguments from [1], with an additional case analysis that
arises from the new elements Cu and CX , and the concepts they belong to. ut

Combining all this lemmata, we obtain the desired results, as stated in the
following theorem.

Theorem 8. Subsumption of rough EL concept names w.r.t. TBoxes can be
decided in polynomial time. Moreover, the TBox T can be classified in polynomial
time.



5 Conclusions

We have studied rough EL, a description logic that extends the lightweight DL
EL to allow for the lower and upper approximations from rough set theory. We
have shown that subsumption of concept names w.r.t. rough EL TBoxes can be
decided in polynomial time. This result was obtained by providing a completion-
based algorithm capable of classifying the TBox in polynomial time. As an added
benefit, our approach does not require including expensive constructors that
damage the efficiency of DL reasoners.

Our algorithm is a direct extension from the one presented in [1] in that,
when no rough constructors appear in the TBox, the algorithm behaves similarly.
However, the cost of handling potential rough concepts is to double the space
needed.8 This unnecessary cost can be easily avoided by disallowing applications
of rules cr4 to cr13 whenever the TBox uses only classical EL constructors.
The additional rules and completion sets needed for our completion algorithm
should not impose many problems for a prospective implementation.

These polynomial-time complexity results give strength to the observation
from [21] that rough constructors can be added to classical DLs with no addi-
tional cost in terms of complexity. In fact, it has been shown in [20], that the
polynomial upper bound still holds if the bottom concept, nominals, and role
inclusion axioms are also allowed. Except for the absence of concrete domains,
these constructors cover the whole DL EL++, the formalism underlying the OWL
2 EL profile of the standard ontology language for the semantic web OWL 2.

We should emphasize that in this paper we have considered only classical sub-
sumption in a rough description logic. There exist other non-standard reasoning
services that consider rough concepts in higher detail, as described in [16]. As
presented in this paper, our completion algorithm is incapable of solving those
reasoning tasks.

As part of our future work, we intend to study the complexity of rough-set-
specific reasoning problems for rough EL and, if possible, extend our completion
algorithm to handle them adequately. We also intent to study possible optimiza-
tions that would allow for a practical implementation of our approach. Another
open question that may be of interest corresponds to extending the logic to allow
also for rough role constructors.
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