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Abstract. In this paper we provide empirical evidence of the necessityof in-
tegrating mapping repair techniques within the ontology matching process, an
aspect that is neglected in many ontology matching systems.We also evaluate the
feasibility of using state-of-the-art mapping repair techniques in practice, such as
those implemented in Alcomo and LogMap. A preliminary evaluation was con-
ducted in the context of the Ontology Alignment Evaluation Initiative (OAEI)
2012. We extend this evaluation and report about the resultsin detail.

1 Introduction

OWL ontologies are extensively used in biomedical information systems. Prominent
examples of biomedical ontologies are the National Cancer Institute Thesaurus (NCI)
[14], the Foundational Model of Anatomy (FMA ) [36] and the Systematized Nomen-
clature of Medicine Clinical Terms (SNOMED CT) [39]. These reference bio-medical
ontologies, however, are being developed independently bydifferent groups of experts
and, as a result, they use different entity naming schemes intheir vocabularies. For
example, NCI defines the entity “Myocardium”, whereas FMA uses the entity “Cardiac
Muscle Tissue” to describe the muscles that surround and power the human heart. Thus,
to integrate data among applications, it is crucial to establish correspondences (called
mappings or alignments) between the entities of their respective ontologies.

In the last ten years, the Semantic Web and bio-informatics research communities
have extensively investigated the problem of automatically computing correspondences
between independently developed ontologies, usually referred to as theontology match-
ing problem. For example, the Ontology Alignment Evaluation Initiative3 (OAEI) is an
annual international campaign for the systematic evaluation of ontology matching sys-
tems [10, 9, 40, 28, 1]. The matching problems in the OAEI are organized in several
tracks, with each track involving different kinds of test ontologies. For example, the
Large Biomed track involves the matching of FMA , NCI and SNOMED CT.

OWL ontologies have well-defined semantics [5], however, many systems partici-
pating in the OAEI campaigns disregard the semantics of the input ontologies, and are
thus unable to detect and repair logical errors (e.g. unsatisfiabilities) that follow from
the union of the input ontologies and the mappings. Only the ontology matching sys-
tems S-Match [13], ASMOV [18], CODI [33, 17], KOSIMap [35], YAM++ [15] and

3 http://oaei.ontologymatching.org/



LogMap [20, 24] have implemented reasoning and repair techniques in the context of
the OAEI. Furthermore, LogMap was the only system successfully applying such tech-
niques in all tracks of the OAEI 2012 campaign [1].

In this paper, we focus on the evaluation conducted in the OAEI 2012 Large Biomed
track and we provide an extension of the results presented in[1]. Concretely, we evalu-
ate the feasibility and impact of integrating state-of-the-art mapping repair techniques,
such as those implemented in Alcomo [29] or in LogMap, withinthe matching process.

2 Preliminaries

In this section, we first introduce the formal representation of ontology mappings. Next,
we present the notions of mapping coherence and (approximate) mapping repair. Fi-
nally, we discuss how ontology matching systems are evaluated within the OAEI.

2.1 Representation of ontology mappings

Mappings are conceptualised as tuples of the form〈id, e1, e2, n, ρ〉, with id a unique
identifier for the mapping,e1, e2 entities in the vocabulary of the relevant ontologies,
n a numeric confidence measure between0 and1, andρ a relation betweene1 ande2,
typically subsumption (i.e.,e1 is more specific thane2), equivalence (i.e.,e1 ande2 are
synonyms) or disjointness (i.e., no individual can be an instance of bothe1 ande2) [8].

RDF Alignment [6] is the main format used in the OAEI campaignto represent
mappings containing the aforementioned elements. Additionally, mappings are also rep-
resented as OWL 2 subclass, equivalence, and disjointness axioms [5]; mapping iden-
tifiers (id) and confidence values (n) are then represented as axiom annotations. Such
a representation enables the reuse of the extensive range ofOWL 2 reasoning infras-
tructure that is currently available. Note that alternative formal semantics for ontology
mappings have been proposed in the literature (e.g., [4, 8, 31]).

2.2 Incoherent mappings and (approximate) mapping repair

The ontologyO1 ∪ O2 ∪ M resulting from the integration ofO1 andO2 via a set
of mappingsM, may entail axioms that do not follow fromO1, O2, or M alone. In
particular, classes that were satisfiable inO1 or O2 may become unsatisfiable w.r.t.
O1 ∪ O2 ∪ M. A set of mappings that leads to such logical errors is referred to as
incoherent [30].

Definition 1 (Mapping Incoherence).A set of mappingsM is incoherent with respect
to O1 and O2, if there exists a class A in the signature of O1∪O2 such that O1∪O2 6|=
A ⊑ ⊥ and O1 ∪ O2 ∪M |= A ⊑ ⊥.

An incoherent set of mappingsM can be fixed by removing mappings fromM.
This process is referred to asmapping repair (or repair for short).

Definition 2 (Mapping Repair). Let M be an incoherent set of mappings M w.r.t. O1

and O2. A set of mappings R ⊆ M is a mapping repair for M w.r.t. O1 and O2 if
M\R is coherent w.r.t. O1 and O2.



An incoherent set of mappings can be repaired in many different ways. A trivial
repair isR = M, since an empty set of mappings is obviously coherent (according
to Definition 1). Nevertheless, the objective is to remove asfew mappings as possible,
which is consistent with the principle of minimal change in belief revision [11]. Such
minimal repairs are typically referred to in the literatureasdiagnosis — a term coined
by Reiter [34] and introduced to the field of ontology debugging in [37].

Definition 3 (Diagnosis).Let R be a repair for M with respect to O1 and O2. R is a
diagnosis if each R′ ⊂ R is not a repair for M with respect to O1 and O2.

Standard justification-based ontology debugging techniques (e.g. [37, 38, 25, 41, 16,
22]) can be exploited to compute a repair (or a diagnosis) foran incoherent set of map-
pings. However, justification-based technologies do not scale when the number of un-
satisfiabilities is large (a typical scenario in mapping repair problems [19]). To address
this scalability issue, mapping repair systems usually compute anapproximate repair
using incomplete reasoning techniques. An approximate repairR≈ does not guarantee
thatM \ R≈ is coherent, but it will (in general) reduce significantly the number of
unsatisfiabilities caused by the original set of mappingsM.

2.3 Evaluation of ontology matching systems in the OAEI

The evaluation in the OAEI campaign is carried out automatically using the infrastruc-
ture developed within the EU project SEALS [42].4 SEALS provides a repository to
store test data (e.g. OAEI datasets) and an interface to consume this data and generate
an output (e.g. set of mappings) following the accepted formats. OAEI participants have
wrapped their systems according to the SEALS interface. Hence, OAEI systems are ex-
ecuted using the same workflow, which facilitates reproducibility of the experiments.

The quality of the mappingsM computed by a matching system is often measured
in terms of precision and recall with respect to a reference set of mappings (also called
gold standard)MGS. Precision (Pre) is defined as|M∩MGS|/|M|, while recall (Rec)
is defined as|M ∩MGS|/|MGS|. The F-score (F) combines precision and recall and
is usually defined as their harmonic mean(2 × Pre× Rec)/(Pre+ Rec). The OAEI
also evaluates the coherence of the computed mappingsM with respect to the number
of unsatisfiable classes obtained when reasoning with the input ontologiesO1 andO2

together withM. Additionally, computation times are also recorded.

3 The OAEI Large BioMed track

In this section we give an overview of the test data, participating systems and coherence
results of the OAEI 2012 Large Biomed track.5 The track involves the matching of FMA

version 2.0 (78, 989 classes), NCI version 08.05d (66, 724 classes) and SNOMED CT

Jan. 2009 version (306, 591 classes) and exploits the UMLS Metathesaurus [3] as the
basis for the track’s reference mappings (see [23, 21] for details). UMLS is the most

4 Semantic Evaluation At Large Scale:http://www.seals-project.eu
5 Large BioMed track:http://www.cs.ox.ac.uk/isg/projects/SEALS/oaei/



Table 1: Mapping coherence of the top 7 systems in the OAEI 2012 Large BioMed track

System FMA -NCI FMA -SNOMED CT SNOMED CT -NCI
Unsat. Ratio Unsat. Ratio Unsat. Ratio

LogMapnoe 9 0.01% 10 0.003% ≥0 ≥0%
LogMap 9 0.01% 10 0.003% ≥17 ≥0.005%
ServOMap 48,743 27% 273,242 71% ≥313,643 ≥84%
ServOMapL 50,334 28% 99,726 26% ≥314,939 ≥84%
GOMMA 5,574 4% 10,752 3% ≥266,051 ≥71%
GOMMA bk 12,939 9% 119,657 31% ≥313,015 ≥84%
YAM++ 50,550 29% 106,107 28% ≥269,107 ≥72%

comprehensive effort for integrating independently-developed medical thesauri and on-
tologies, including FMA , NCI and SNOMED CT. Currently, the UMLS-based reference
mappings only include subsumption and equivalence correspondences between classes.

The track consists of three matching problems: FMA -NCI, FMA -SNOMED CT and
SNOMED CT-NCI; the gold standard is provided by their corresponding UMLS-based
reference mappings; there are three tasks associated to each matching problem, each of
which involves different fragments of the input ontologies. In this paper we focus on
the tasks involving the matching of the whole FMA , NCI and SNOMED CT ontologies.

We have evaluated the coherence of the mappings obtained by the top systems in
the OAEI 2012 Large BioMed track: LogMap, YAM++ [15], ServOMap [2], GOMMA
[27] and some of their variants (LogMapnoe, GOMMAbk and ServOMapL). LogMap’s
default algorithm uses ontology modules to reduce the search space, while the variant
LogMapnoe does not rely on module extraction. GOMMAbk, unlike GOMMA, exploits
specialised background knowledge. ServOMapL is a light version of ServOMap with
some features deactivated. Table 1 summarizes the obtainedincoherence results, which
have been obtained using the OWL 2 reasoner HermiT [32].6 The table reports(i) num-
ber of unsatisfiable classes inO1 ∪ O2 ∪M, whereM represents the mappings com-
puted by a given system, and(ii) the ratio of unsatisfiable classes over the total num-
ber of classes. The best results were obtained by LogMap and its variant LogMapnoe;
LogMapnoe managed to additionally detect some unsatisfiable classes that were missed
by LogMap due to the fact that they fell outside the computed modules. The mappings
computed by the other matching systems led to a huge number ofunsatisfiable classes.
For example, 71% of the classes in the integration of FMA and SNOMED CT via Ser-
vOMap mappings are unsatisfiable.

4 Mapping repair using Alcomo and LogMap

Alcomo and LogMap implement different techniques to repairincoherent mappings. In
the evaluation conducted in this paper, both Alcomo and LogMap are configured to use
incomplete reasoning. Thus, given two ontologiesO1 andO2 and a set of mappings

6 In the case of SNOMED CT-NCI no OWL 2 reasoner could succeed in classifying the integrated
ontology via mappings [19], so we used the OWL 2 EL reasoner ELK [26] instead to provide
a lower bound on the number of unsatisfiable classes.



M between them, Alcomo and LogMap compute an approximate repair R≈ such that
M\R≈ is almost coherent and only leads to a (relatively) small number of unsatisfi-
able classes. Next we present an overview of the Alcomo and LogMap mapping repair
techniques, the interested readers please refer to [29, 20,24] for a full description of
these systems. Note that LogMap was originally implementedas an ontology match-
ing system, however, it can also operate as a stand-alone mapping repair system. From
now on we will refer to LogMap’s repair module as LogMap-Repair. Alcomo, unlike
LogMap, has specifically been designed to repair incoherentmappings.

4.1 The Alcomo mapping repair system

Alcomo implementes two reasoning components. One component is a pattern-based
reasoning technique that is incomplete for detecting all minimal incoherent mapping
subsets. However, this approach will detect a large amount of conflicting pairs of map-
pings. The basic idea is to first classify bothO1 andO2 using an OWL 2 reasoner. Given
two mapping axiomsA1 ≡ C2 ∈ M andB1 ≡ D2 ∈ M with A1 andB1 defined inO1

andC2 andD2 defined inO2, Alcomo checks ifO1 |= A1 ⊑ B1 andO2 |= C2 ⊑ ¬D2.
If this is the case, it can be concludedO1∪O2∪M |= C2 ⊑ ⊥, i.e.,C2 is unsatisfiable
in the ontology integrated viaM. Thus, the mapping set{A1 ≡ C2, B1 ≡ D2} is inco-
herent. This basic idea is extended and four patterns are defined that take subsumption
and equivalence mappings between classes and properties into account.

Depending on the configuration of Alcomo, these techniques can be accompanied
with complete reasoning techniques that are built on the classical black-box approaches
for repairing ontologies (e.g. [38, 25, 41, 16]). The basic idea of such a combined ap-
proach is to compute a preliminary superset of a solution based on the incomplete rea-
soning techniques. This intermediate result is then checked with complete reasoning
techniques and further reduced if required. If complete reasoning techniques are acti-
vated, it can be guaranteed that Alcomo generates a coherentmapping set by removing
R from M. Moreover,R will be a diagnosis. Without activating complete reasoning
techniques, Alcomo computes an approximate repairR≈ and it cannot guarantee the
coherence of the output mapping set. The approximate repairR≈, however, will always
be a subset (never a superset) of the diagnosis.

Mappings are usually annotated with confidences. Thus, the quality of a diagno-
sis can be defined in terms of the aggregated confidence ofR. An intuitive idea is to
remove mapping sets with less aggregated confidence. Alcomoaims to solve two in-
terconnected problems at the same time:(i) the reasoning problem of detecting and
repairing incoherent mappings, and(ii) the optimization problem of taking confidences
into account in the appropriate way. With respect to the optimization problem, two dif-
ferent types of diagnosis have been defined. A global optimaldiagnosis is introduced
as the diagnosis that removes as less confidence as possible.If all correspondences are
weighted equally with respect to their (positive) confidence values, a global optimal di-
agnosis will be a diagnosis that is a smallest diagnosis in numbers of correspondences.
This type of diagnosis is, however, computed by an exhaustive search algorithm, and
thus it is not feasible to compute the global optimal diagnosis for large repair problems.

The second type of a diagnosis is called a local optimal diagnosis. Such a diagnosis
can be constructed by a simple greedy approach starting withan empty mapping set



Algorithm 1 Alcomo’s algorithm with local optimal diagnosis & incomplete reasoning
Input: O1, O2: input ontologies;M: input mappings
Output: M′: output mappings;R≈: approximate mapping repair.

1: M′ := ∅
2: R≈ := ∅
3: classifyO1 andO2

4: C := ConflictPairs(O1,O2,M)
5: for eachm ∈ M do ⊲ iterate overM in descending order with respect to confidences
6: coh := true

7: for eachm′ ∈ M′ do
8: if (m′, m) ∈ C then
9: coh := false

10: break
11: end if
12: end for
13: if coh = true thenM′ := M′ ∪ {m}
14: else R≈ := R≈ ∪ {m}
15: end for
16: return 〈M′,R≈〉

M′ that is extended step by step by adding mappings fromM. These mappings are
ordered with respect to the confidence values starting with the highest confidence. Each
time a mapping is added toM′, the coherence is checked via a combination of pattern-
based and complete reasoning techniques. IfM′ becomes incoherent, the mapping is
not added toM′. The resulting diagnosisR = M \ M′ is also a minimal hitting
set [34] over all conflicts, however, in general it is not a smallest confidence weighted
diagnosis. A proof for this claim and a detailed explanationof an improved variant of
this algorithm can be found in Section 6.1 in [29].

Both algorithms can be executed with complete reasoning activated or deactivated.
In the latter case, only those logical errors that can be detected by the pattern-based
reasoning approach are taken into account. In our experiments we have applied Al-
como in the setting that aims to compute a local optimal diagnosis using incomplete
pattern-based reasoning techniques only. The corresponding pseudocode is shown in
Algorithm 1. In Step 4 the pattern-based reasoning techniques described above are used
to compute a set of conflicting pairs of mappings. Each of these pairs is incoherent with
respect toO1 andO2. Note that most of the computational effort is dedicated to this
(preprocessing) step. The remaining part of the algorithm requires no further reasoning
and it is only required to check whether a certain combination of two mappings appears
as a previously computed conflict pair.

4.2 The LogMap-Repair system

Algorithm 2 shows the pseudocode of the algorithm implemented by LogMap-Repair.
Steps 1 and 2 initialise the output mappingsM′ with the input mappingsM and the
repair setR≈ with the empty set. Note that LogMap-Repair splits equivalence map-
pings into two equivalent subsumption mappings. LogMap-Repair encodes the input



Algorithm 2 LogMap-Repair algorithm based on Horn propositional reasoning
Input: O1, O2: input ontologies;M: input mappings
Output: M′: output mappings;R≈: approximate mapping repair.

1: M′ := M
2: R≈ := ∅
3: 〈P1,P2〉 := PropEncoding(O1,O2)
4: for eachC ∈ OrderedVariables(P1 ∪ P2) do
5: PC := P1 ∪ P2 ∪M′ ∪ {true → C}
6: 〈sat,M⊥〉 := DowlingGallier(PC)
7: if sat = false then
8: Rep := ∅
9: rep size := 1

10: repeat
11: for each subsetRC of M⊥ of sizerep size do
12: sat := DowlingGallier(PC \ RC)
13: if sat = true thenRep := Rep ∪ {RC}
14: end for
15: rep size := rep size+ 1
16: until Rep 6= ∅
17: RC := element ofRep with minimum aggregated confidence.
18: M′ := M′ \ RC

19: R≈ := R≈ ∪RC

20: end if
21: end for
22: return 〈M′,R≈〉

ontologiesO1 andO2 as Horn propositional theoriesP1 andP2 (Step 3) and exploits
this encoding to subsequently detect unsatisfiable classesin an efficient and sound way
during the repair process. The theoryP1 (resp.P2) consists of the following Horn rules:

– A rule A → B for all distinct classesA,B such thatA is subsumed byB in O1

(resp. inO2); subsumption relations can be determined using either an OWL 2
reasoner, or syntactically (in an incomplete way).

– RulesAi ∧ Aj → false (1 ≤ i < j ≤ n) for each disjointness axiom of the form
DisjointClasses(A1, . . . , An).

– A rule A1 ∧ . . . ∧ An → B for each subclass or equivalence axiom having the
intersection ofA1, . . . An as subclass expression andB as superclass.

In Step 4, propositional variables inP1 (resp. inP2) are ordered such that a variable
C in P1 (resp. inP2) comes beforeD wheneverD is subsumed byC in O1 (resp. in
O2). This is a well-known repair strategy: subclasses of an unsatisfiable class are also
unsatisfiable and hence before repairing an unsatisfiable class one first needs to repair its
superclasses. Satisfiability of a propositional variableC is determined by checking sat-
isfiability of the propositional theoryPC consisting of(i) the rule(true → C); (ii) the
propositional representationsP1 andP2; and(iii) the current set of output mappings
M′ (seen as propositional implications).



Algorithm 3 Evaluation of Alcomo and LogMap-Repair
Input: O1, O2: input ontologies;MGS: reference mappings; MS: an ontology matching system

1: Compute mappingsM (I ) betweenO1 andO2 using system MS
2: Store matching time (II )
3: Compute F-score (III ) of M with respect toMGS

4: Get unsatisfiable classes ofO1 ∪O2 ∪M (IV ) using a reasoner
5: Compute approximate repairR≈ (V) using Alcomo system ⊲ See Algorithm 1
6: Store repair time (VI )
7: Compute F-score (VII ) of M\R≈ with respect toMGS

8: Get unsatisfiable classes ofO1 ∪O2 ∪M \R≈ (VIII ) using a reasoner
9: Compute approximate repairR≈ (IX ) using LogMap-Repair system ⊲ See Algorithm 2

10: Store repair time (X)
11: Compute F-score (XI ) of M\R≈ with respect toMGS

12: Get unsatisfiable classes ofO1 ∪ O2 ∪M \R≈ (XII ) using a reasoner

LogMap-Repair implements the classical Dowling-Gallier algorithm for proposi-
tional Horn satisfiability [7, 12]. LogMap-Repair’s implementation of Dowling-Gallier’s
algorithm also records all mappings potentially involved in an unsatisfiability. Thus, a
call to Dowling-Gallier returns a satisfiability valuesat and, optionally, the (overesti-
mated) set of conflicting mappingsM⊥ (see Steps 6 and 12). An unsatisfiable class
C is repaired by discarding conflicting mappings forC (Lines 8 to 19). Thus, subsets
RC of M⊥ of increasing size are then identified until a repair is found(Steps 10-16).7

Thus, LogMap-Repair does not compute a diagnosis for the unsatisfiable classC but
rather the repairs of smallest size. If several repairs of a given size exist, the one with the
lowest aggregated confidence is selected according to the confidence values assigned to
mappings (Step 17). Finally, Steps 18 and 19 update the output mappingsM′ and the
approximate mapping repairR≈ by extracting and addingRC , respectively.

Algorithm 2 ensures thatP1 ∪ P2 ∪ M′ ∪ {true → C} is satisfiable for eachC
occurring inP1∪P2. The propositional encoding ofO1 andO2 is, however, incomplete
and hence the algorithm does not ensure satisfiability of each class inO1 ∪ O2 ∪M′.
Nevertheless, as shown in Section 5, the number of unsatisfiable classes remaining after
computing an approximate repairR≈ is typically small.

5 Evaluation

In this section we evaluate the feasibility of integrating the Alcomo and LogMap-Repair
systems within the ontology matching process. For each of the matching problems of
the OAEI 2012 Large BioMed track and for each of the top matching systems in this
track (see Section 3) we have conducted the evaluation in Algorithm 3. The Roman
numbers refer to measurements that are stored during the evaluation. We have run the
evaluation using the SEALS interface in a high performance server with 16 CPUs and
allocating 15 Gb RAM.

7 The size ofM⊥ andRC are in practice manageable, and thus the complexity of performing
Step 11 in Algorithm 2 is not critical.



Table 2: Mapping repair in the FMA -NCI problem.

System
Matching Results OAEI 2012 Repair with Alcomo Repair with LogMap

I II III IV V VI VII VIII IX X XI XII
|M| t (s) F Unsat. |R≈| t (s) F Unsat. |R≈| t (s) F Unsat.

ServOMap 4,932 204 0.819 48,743 97 321 0.820 9 115 21 0.819 9
ServOMapL 5,400 251 0.841 50,334 126 342 0.841 9 166 24 0.839 9
GOMMA 5,686 217 0.839 5,574 123 321 0.839 15 142 20 0.838 9
GOMMA bk 6,330 231 0.837 12,939 184 341 0.836 29 259 33 0.833 9
YAM++ 5,476 1,304 0.862 50,550 116 324 0.862 10 141 21 0.861 9

Average 5,565 441 0.840 33,628 129 330 0.840 14 165 24 0.838 9

Table 3: Mapping repair in the FMA -SNOMED CT problem.

System
Matching Results OAEI 2012 Repair with Alcomo Repair with LogMap
I II III IV V VI VII VIII IX X XI XII

|M| t (s) F Unsat. |R≈| t (s) F Unsat. |R≈| t (s) F Unsat.

ServOMap 12,642 532 0.770 273,242 829 2,672 0.749 0 2,640 284 0.721 0
ServOMapL 13,210 517 0.794 99,729 975 2,779 0.767 0 2,953 274 0.752 0
GOMMA 11,648 1,994 0.291 10,752 463 2,840 0.293 0 618 245 0.291 0
GOMMA bk 25,660 1,893 0.708 119,657 1,726 2,809 0.698 1,363 5,295 314 0.678 0
YAM++ 14,088 23,900 0.765 106,107 783 2,800 0.760 0 3,461 262 0.720 0

Average 15,450 5,767 0.666 121,897 955 2,780 0.653 273 2,993 276 0.632 0

Elements inM andR≈ (I , V andIX ) represent subsumption mappings. As in Table
1, the unsatisfiable classes (IV , VIII and XII ) in the FMA -NCI and FMA -SNOMED

CT matching problems have been computed using the HermiT reasoner, while in the
SNOMED CT-NCI problem we have provided a lower bound using the ELK reasoner.

Tables 2-4 shows the result of the conducted evaluation using Algorithm 3. The
results, which suggest that Alcomo and LogMap-Repair scaleand produce very good
results in practice, can be summarized as follows:

i the computed (approximate) repairs are not aggressive andthe average size of the
repairs ranges from 5% (Alcomo) to 11% (LogMap-Repair) of the input mappings,

ii the repair process, although it requires an (appreciable) additional computation
time, does not represent a bottleneck in the matching process,

iii the impact on the F-score is (on average) negligible,8 and
iv the incoherence of the repaired mapping sets has been significantly reduced in all

test cases and completely removed in some of them.

Regarding the comparison between Alcomo and LogMap-Repair, Tables 2-4 also
show that LogMap-Repair is 10 to 15 times faster compared to Alcomo, although Al-
como runtimes are slightly less affected by different mapping inputs; Alcomo is less
aggressive and its repairs involve (in general) a smaller number of mappings, neverthe-
less LogMap-Repair results are better in terms of mapping coherence; finally the impact
on the F-score is (on average) better in Alcomo.

8 The computed (approximate) repairs have, in general, a negative impact on the recall which is
compensated with an increase of the precision.



Table 4: Mapping repair in the SNOMED CT-NCI problem.

System
Matching Results OAEI 2012 Repair with Alcomo Repair with LogMap
I II III IV V VI VII VIII IX X XI XII

|M| t (s) F Unsat. |R≈| t (s) F Unsat. |R≈| t (s) F Unsat.

ServOMap 24,924 654 0.664 ≥313,643 937 3,223 0.663 ≥35 1,671 276 0.666 ≥296
ServOMapL 27,928 738 0.678 ≥314,939 1,076 2,917 0.677 ≥2,055 1,656 314 0.679 ≥1,241
GOMMA 27,386 1,820 0.606 ≥266,051 1,903 2,947 0.603 ≥2,085 2,949 303 0.607 ≥37
GOMMA bk 34,090 1,940 0.635 ≥313,015 2,720 3,098 0.638 ≥30,583 5,003 435 0.641 ≥1
YAM++ 28,206 30,155 0.680 ≥269,107 757 2,964 0.679 ≥0 1,049 305 0.680 ≥0

Average 28,507 7,061 0.653 ≥295,351 1,479 3,030 0.652 ≥6,952 2,465 326 0.655 ≥315

6 Conclusions

In the paper we have pointed out that many ontology matching systems participating
in the OAEI campaign do not implement or reuse methods to assess the coherence of
the generated mappings. As a consequence, a large number of classes become unsat-
isfiable when reasoning with the matched ontologies together with the mappings. We
have applied Alcomo and LogMap-Repair systems on the data sets and mapping results
of the OAEI 2012 Large Biomed track to support two claims regarding the application
of (approximate) mapping repair techniques:(i) it is feasible with respect to robustness
and runtimes, and(ii) it has a significant impact on the quality of the mappings with
respect to their logical coherence.

Our results clearly support both claims and should encourage ontology matching
system developers to use Alcomo and LogMap-Repair, or to develop their own repair
techniques. On the one hand, Alcomo and LogMap-Repair have been successfully ap-
plied to all data sets and matching systems. LogMap-Repair requires in all cases less
time to compute a repair than the necessary time to compute the mappings; while Al-
como’s times, although slower than LogMap-Repair’s, are inmany cases in line with
the required matching time. On the other hand, Alcomo and LogMap-Repair reduced
significantly the incoherence of the input mappings, and hence increasing their quality.
Furthermore, the F-score stays relatively stable when applying the repairs.

The results also suggest that Alcomo and LogMap-Repair could complement each
other. LogMap-Repair is more efficient in terms of runtimes and mapping coherence
while Alcomo is less aggressive (i.e. removes less mappingseven in those cases where
the same mapping coherence results are achieved) and its impact in the F-score is
smaller. Future work will involve the design and development of a repair algorithm
combining the techniques implemented in Alcomo and LogMap-Repair.

Finally, we believe that our evaluation is not only beneficial for ontology matching
system developers. It also serves as a good basis to compare ontology and mapping
repair systems, in terms of efficiency and completeness, in achallenging scenario as the
one exposed in the OAEI Large Biomed track. We highly encourage developers of such
systems to compare their results against the results presented in this paper. The relevant
data sets and mappings are available online athttp://www.cs.ox.ac.uk/isg/
projects/SEALS/oaei/.
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