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Abstract. The study of inconsistency-tolerant semantics for query answering in
ontological languages has recently gained much attention. In this work, we con-
sider three inconsistency-tolerant semantics recently proposed in the literature,
namely: consistent query answering, the intersection (also called IAR) semantics,
and the intersection of closed repairs (ICR) semantics. We study the data com-
plexity of conjunctive query answering under these semantics for a wide set of
tractable fragments of Datalog+/–. The Datalog+/– family of ontology languages
covers several important description logics (DLs), bridging the gap in expressive
power between database query languages and DLs as ontology languages, and
extending the well-known Datalog language in order to embed DLs. Its proper-
ties of decidability of query answering and of tractability of query answering in
the (data) complexity make Datalog+/– very useful in modeling real-world appli-
cations in which inconsistency-tolerant reasoning is essential.

1 Introduction

The issue of inconsistency handling in AI in general and in knowledge representation
(KR) in particular has been widely studied in the last three decades. In the database
community, the field of database repairing and consistent query answering (CQA) has
gained much attention since the work of [1], which provided a model-theoretic construct
of a database repair. The most widely accepted semantics for querying a possibly in-
consistent database is that of consistent answers, which yields the set of tuples (atoms)
that appear in the answer to the query over every possible repair. CQA enforces consis-
tency at query time as an alternative to enforcing it at the instance level, as conventional
data cleaning techniques do. This allows to focus on a smaller portion of the database
for which repairs can be computed more easily. Furthermore, techniques have been de-
veloped so that it is not necessary to materialize every possible repair. The work of [14]
addresses the basic concepts and results of the area of CQA.

More recently, the advent of the Semantic Web, a vision for the future Web, which
is strongly based on ontology languages, has led to a resurgence of interest in this
area, specially focusing on the development of efficient inconsistency-tolerant reason-
ing and query answering in DLs and ontology languages. Lately, several works have
focused on inconsistency handling for different classes of DLs, adapting and special-
izing general techniques previously considered for traditional logics [25, 18, 26, 24].
In [20], the adaptation of CQA for DL-Lite ontologies is studied. The intersection se-
mantics (ICons) is presented as a sound approximation of consistent answers, which



Fragment of Datalog+/– Cons ICons ICR

guarded (Theorem 9) co-NP-complete [22] co-NP-complete [22] co-NP-complete
linear (Theorem 10) co-NP-complete [22] FO-rewritable [23] co-NP-complete
multi-linear (Theorem 10) co-NP-complete FO-rewritable co-NP-complete
frontier-one (Theorem 11) co-NP-complete co-NP-complete co-NP-complete
frontier-guarded (Theorem 12) co-NP-complete co-NP-complete co-NP-complete
joint-acyclic (Theorem 14) co-NP-complete co-NP-complete co-NP-complete
weakly-acyclic (Theorem 13) co-NP-complete co-NP-complete co-NP-complete
sticky (Theorem 15) co-NP-complete FO-rewritable co-NP-complete
sticky-join (Theorem 16) co-NP-complete FO-rewritable co-NP-complete
weakly-sticky (Theorem 17) co-NP-complete co-NP-complete co-NP-complete
weakly-sticky-join (Theorem 17) co-NP-complete co-NP-complete co-NP-complete

Table 1. Summary of this paper’s data complexity results for BCQ answering in 11 fragments of
Datalog+/– under the three different inconsistency-tolerant semantics Cons, ICons, and ICR.

for the DL-Lite family is easier to compute, as well as the closed ABox version, which
considers the closure of the set of assertional axioms (ABox, or extensional database)
by the terminological axioms (TBox, or intensional database). Later, in [21], the authors
explore first-order (FO-) rewritability of DL-Lite ontologies under ICons . The data and
combined complexity of the semantics were studied in [27] for a wide spectrum of DLs.
Despite the fact that computing consistent answers is an inherently hard problem ([20]
shows co-NP completeness even for ground atomic queries in DL-Lite), some works
identify cases for simple ontologies (within the DL-Lite family) for which tractable
results can be obtained [6, 8]. In [27], the complexity for query answering under in-
consistency-tolerant semantics is provided for a wide spectrum of DLs, ranging from
tractable ones (EL) to very expressive ones (SHIQ). In [22], consistent query answer-
ing and query answering under the ICons semantics for linear and guarded Datalog+/–
ontologies are studied. An alternative inconsistency-tolerant semantics, called the k-
lazy semantics, is also proposed. In [23], FO-rewritability is shown for query answering
under the ICons semantics for linear Datalog+/–.

In this work, we analyze the (data) complexity of query answering of Boolean con-
junctive queries for a set of fragments of Datalog+/– under the three different recent se-
mantics consistent query answering (CQA) [20], the intersection semantics (ICons) [20],
and the intersection of closed repairs (ICR) [8]. We focus on the Datalog+/– family of
ontology languages [10], particularly on several fragments of Datalog+/– that guarantee
termination of query answering procedures in polynomial time in the data complexity
or FO-rewritability. Datalog+/– enables a modular rule-based style of knowledge repre-
sentation, and it represents syntactical fragments of first-order logic so that answering
a BCQ Q under a set ΣT of Datalog+/– rules for an input database D is equivalent to
the classical entailment check D ∪ ΣT |= Q. The following example illustrates how
description logic (DL) knowledge bases are expressed in Datalog+/–.

Example 1 A DL knowledge base consists of a TBox and an ABox. For example, the
knowledge that every conference paper is an article and that every scientist is the



author of at least one paper can be expressed by two TBox axioms: ConfPaper v
Article and Scientist v ∃isAuthor . The fact that Mark is a scientist can be expressed
by the ABox axiom Scientist(Mark). The TBox can be encoded in Datalog+/– rules
as follows: ConfPaper(X)→Article(X) and Scientist(X)→∃Y isAuthor(X,Y ).
The ABox is encoded by an identical set of facts in the database. The TBox axiom
ConfPaper v¬JournalPaper saying that conference papers are not journal papers,
can be expressed by the following constraint ConfPaper(X)∧JournalPaper(X)→⊥.
Finally, a simple Boolean conjunctive query (BCQ) asking if Mark authors a paper is
∃XisAuthor(Mark , X).

Datalog+/–’s properties of decidability and data tractability of query answering,
along with its expressive power, make it very useful in many real-world application
areas, such as ontology querying, Web data extraction, data exchange, ontology-based
data access, and data integration. Studying the complexity of consistent query answer-
ing for several semantics and languages can provide insights for finding tractable special
cases, average cases, and approximation algorithms for each of these combinations, or
even inspirations for inconsistency handling semantics with better computational prop-
erties. Table 1 summarizes this paper’s data complexity results for BCQ answering in 11
fragments of Datalog+/– under the three different inconsistency-tolerant semantics.

This paper is organized as follows. In Section 2, we recall the basic notions of
Datalog+/– ontologies. Section 3 provides the definitions for the three inconsistency-
tolerant semantics and some results about their relationships. In Section 4, we pro-
vide a complete data complexity analysis for 11 fragments of Datalog+/– and the three
inconsistency-tolerant semantics (proofs of all results are given in the extended version
of this paper). Section 5 summarizes the main results and gives an outlook on future
work.

2 Preliminaries on Datalog+/–

In this Section, we briefly recall the basics on Datalog+/– [10], namely, on relational
databases, (Boolean) conjunctive queries ((B)CQs), tuple- and equality-generating de-
pendencies (TGDs and EGDs, respectively), negative constraints, and Datalog+/– on-
tologies.

Databases and Queries. We assume (i) an infinite universe of (data) constants ∆
(which constitute the “normal” domain of a database), (ii) an infinite set of (labeled)
nulls ∆N (used as “fresh” Skolem terms, which are placeholders for unknown val-
ues, and can thus be seen as variables), and (iii) an infinite set of variables V (used
in queries, dependencies, and constraints). Different constants represent different val-
ues (unique name assumption), while different nulls may represent the same value. We
denote by X sequences of variables X1, . . . , Xk with k> 0. We assume a relational
schemaR, which is a finite set of predicate symbols (or simply predicates). A term t is
a constant, null, or variable. An atomic formula (or atom) a has the form P (t1, ..., tn),
where P is an n-ary predicate, and t1, ..., tn are terms.

A database (instance) D for a relational schema R is a (possibly infinite) set of
atoms with predicates from R and arguments from ∆. A conjunctive query (CQ) over



R has the form Q(X) = ∃YΦ(X,Y), where Φ(X,Y) is a conjunction of atoms
(possibly equalities, but not inequalities) with the variables X and Y, and possibly
constants, but without nulls. A Boolean CQ (BCQ) over R is a CQ of the form Q(),
often written as the set of all its atoms, without quantifiers. Answers to CQs and BCQs
are defined via homomorphisms, which are mappings µ : ∆∪∆N ∪V → ∆∪∆N ∪V
such that (i) c ∈ ∆ implies µ(c) = c, (ii) c ∈ ∆N implies µ(c) ∈ ∆∪∆N , and (iii) µ is
naturally extended to atoms, sets of atoms, and conjunctions of atoms. The set of all
answers to a CQ Q(X)=∃YΦ(X,Y) over a database D, denoted Q(D), is the set
of all tuples t over ∆ for which there exists a homomorphism µ : X∪Y→∆ ∪ ∆N

such that µ(Φ(X,Y))⊆D and µ(X)= t. The answer to a BCQQ() over a databaseD
is Yes, denoted D |=Q, iff Q(D) 6= ∅.

Given a relational schema R, a tuple-generating dependency (TGD) σ is a first-
order formula of the form ∀X∀YΦ(X,Y)→∃ZΨ(X,Z), where Φ(X,Y) and Ψ(X,
Z) are conjunctions of atoms overR (without nulls), called the body and the head of σ,
denoted body(σ) and head(σ), respectively. Such σ is satisfied in a database D for R
iff, whenever there exists a homomorphism h that maps the atoms of Φ(X,Y) to atoms
of D, there exists an extension h′ of h that maps the atoms of Ψ(X,Z) to atoms of D.
All sets of TGDs are finite here. Since TGDs can be reduced to TGDs with only single
atoms in their heads, in the sequel, every TGD has w.l.o.g. a single atom in its head.

Query answering under TGDs, i.e., the evaluation of CQs and BCQs on databases
under a set of TGDs is defined as follows. For a database D for R, and a set of TGDs
Σ onR, the set of models of D and Σ, denoted mods(D,Σ), is the set of all (possibly
infinite) databases B such that (i) D⊆B and (ii) every σ ∈Σ is satisfied in B. The set
of answers for a CQQ toD andΣ, denoted ans(Q,D,Σ), is the set of all tuples a such
that a ∈ Q(B) for all B ∈mods(D,Σ). The answer for a BCQ Q to D and Σ is Yes,
denoted D ∪ Σ |=Q, iff ans(Q,D,Σ) 6= ∅. Note that query answering under general
TGDs is undecidable [5], even when the schema and TGDs are fixed [9]. Both problems
of CQ and BCQ evaluation under TGDs are LOGSPACE-equivalent [17, 16]. Moreover,
the query output tuple (QOT) problem (as a decision version of CQ evaluation) and
BCQ evaluation are AC0-reducible to each other. Henceforth, we focus only on BCQ
evaluation, and any complexity results carry over to the other problems.

Negative constraints (or constraints) υ are first-order formulas ∀XΦ(X)→⊥, where
Φ(X) (called the body of υ) is a conjunction of atoms (without nulls). Under the stan-
dard semantics of query answering of BCQs in Datalog+/– with TGDs for each con-
straint ∀XΦ(X)→⊥, we only have to check that the BCQ Φ(X) evaluates to false in
D under Σ; if one of these checks fails, then the answer to the original BCQ Q is false,
otherwise the constraints can simply be ignored when answering the BCQ Q.

Equality-generating dependencies (or EGDs) σ, are first-order formulas ∀XΦ(X)
→Xi=Xj , where Φ(X), called the body of σ, denoted body(σ), is a (without nulls)
conjunction of atoms, and Xi and Xj are variables from X. Such σ is satisfied in a
databaseD forR iff, whenever there exists a homomorphism h such that h(Φ(X,Y))⊆
D, it holds that h(Xi)=h(Xj). In this work, we assume non-conflicting [10] EGDs;
this guarantees that EGDs have no impact on the chase with respect to query answering.
We usually omit the universal quantifiers in TGDs, negative constraints, and EGDs, and
assume that all sets of dependencies and/or constraints are finite.



Datalog+/– Ontologies. A Datalog+/– ontology KB =(D, Σ), whereΣ=ΣT ∪ΣE∪
ΣNC , consists of a finite database D, a set of TGDs ΣT , a set of non-conflicting EGDs
ΣE , and a set of negative constraints ΣNC .

3 Inconsistency-Tolerant Query Answering

Different works on inconsistency handling in description logics (DLs) allow for in-
consistency to occur for different reasons. Depending on the expressive power of the
underlying formalism, some works allow for both terminological axioms (TBox) and
assertional axioms (ABox) to be inconsistent. In this work, following the idea from
database theory in which formulas in Σ are interpreted as integrity constraints express-
ing the semantics of the data contained in D, we assume that Σ is itself consistent, and
inconsistencies can only arise when D and Σ are considered together.

Definition 2 (Consistency) A Datalog+/– ontology KB = (D,Σ) is consistent iff
mods(D,Σ) 6= ∅.

We recall now the notion of data repairs of a Datalog+/– ontology from [22]; intu-
itively these are minimal (in the set-inclusion sense) consistent subsets of D.

Definition 3 (Data Repair) A data repair of a Datalog+/– ontology KB =(D,Σ) is a
setD′ such that (i)D′⊆D, (ii) mods(D′, Σ) 6= ∅, and (iii) there is no other setD′′⊆D
such that D′⊂D′′ and mods(D′′, Σ) 6= ∅. We denote by DRep(KB) the set of all data
repairs for KB .

Data repairs play a central role in consistent answers for a query to an ontology,
which are intuitively the answers relative to each ontology built from a data repair.

Definition 4 (Consistent Answers) Let KB =(D,Σ) be a Datalog+/– ontology, and
Q be a BCQ. Then, Yes is a consistent answer for Q to KB , denoted KB |=Cons Q, iff
it is an answer for Q to each KB ′ =(D′, Σ) with D′ ∈DRep(KB).

The problem of determining if an answer is a consistent answer has been shown
to be hard even for simple ontological languages such as DL-LiteCore [20] even for
more restrictive sublanguages [6]. To avoid intractability, approximations to consistent
answers have been developed. The first we consider only takes into account the atoms
that are in the intersection of all data repairs; it was presented as the IAR semantics
for DL-Lite in [20]. The intersection semantics (or ICons semantics), as called in a
generalization for Datalog+/– ontologies in [22], yields a unique way of repairing in-
consistency, and the consistent answers are intuitively the answers that can be obtained
from that unique set. This semantics is also called cautious query answering in [6].

Definition 5 (Intersection Semantics) Let KB =(D,Σ) be a Datalog+/– ontology,
and Q be a BCQ. Then, Yes is a consistent answer for Q to KB under the intersec-
tion semantics, denoted KB |=ICons Q, iff it is an answer for Q to KBI =(DI , Σ),
where DI =

⋂
{D′ |D′ ∈ DRep(KB)}.



A finer approximation to consistent answers is proposed by [7] which, adapted to
Datalog+/– , corresponds to closing repairs with respect toΣT before intersecting them.
In the next definition, Cn(D′, ΣT ) denotes the set of all ground atoms entailed by a set
of atoms D′ and a set of TGDs ΣT . Note that even though the set of constants may be
infinite, we restrict the closure of D with respect to ΣT to the active domain of D (i.e.,
the constants that appear in the database instance).

Definition 6 (Intersection of Closed Repairs) Let KB =(D,Σ) be a Datalog+/– on-
tology, and Q be a BCQ. Then, Yes is a consistent answer for Q to KB under the ICR
semantics, denoted KB |=ICRQ, iff it is an answer for Q to KBI =(DI , Σ), where
DI =

⋂
{Cn(D′, ΣT ) |D′ ∈ DRep(KB)}.

Soundness for this semantics is shown in [7]; that is, for a given BCQ Q and DL-
Litecore ontology KB , if KB |=ICR Q then KB |=Cons Q. The following proposition
shows the equivalence between the two semantics whenever Q is an atomic ground
BCQ. Note that the result holds for arbitrary Datalog+/– ontologies.

Proposition 7 Let KB be a Datalog+/– ontology, and Q be a ground atomic BCQ. We
have that KB |=Cons Q iff KB |=ICR Q.

Proof. We want to show that KB |=ICR Q iff KB |=Cons Q, that is the same as show-
ing that (

⋂
r∈DRep(KB) Cn(r,ΣT )) |= Q iff for every r ∈ DRep(KB), (r,ΣT ) |= Q.

(⇒) If (
⋂
r∈DRep(KB) Cn(r,ΣT )) |= Q then for every data repair r, either Q ∈⋂

r∈DRep(KB) Cn(r,ΣT ) or there exists a set B ⊆
⋂
r∈DRep(KB) Cn(r,ΣT ) such that

(B,ΣT ) |=Q. This means that (r,ΣT ) |= Q for every r ∈ DRep(KB).

(⇐) If for every r ∈ DRep(KB), we have that (r,ΣT ) |= Q then, for every r,
Cn(r,ΣT ) |= Q and therefore Q ∈ Cn(r,ΣT ), then Q ∈

⋂
r∈DRep(KB) Cn(r,ΣT )

and thus KB |=ICR Q. 2

In the next section we analyze the data complexity of query answering under the
three different inconsistency-tolerant semantics for a variety of fragments of Datalog+/–
for which classical query answering of BCQs has already been shown to be tractable.
The following proposition helps us prove some of the complexity results; in showing
the data complexity in some of the cases; it states that the property of FO-rewritability
for classical query answering of BCQs still holds under the intersection semantics.

Proposition 8 Let KB be a F -Datalog+/– ontology. If query answering is FO-rewrita-
ble for the fragment F , then so is query answering under the ICons semantics.

Proof (sketch). The rewriting algorithm for linear ontologies from [23] can be used to
show FO-rewritability of any fragment of Datalog+/– for which query answering is FO-
rewritable, since this is the only assumption made in the proofs of the results presented
in that paper. 2



4 Landscape of Datalog+/– Classes

The problem of entailment is known to be undecidable in the presence of general
TGDs [5, 13]. However, in the recent years several decidable and even tractable classes
have been defined based on different syntactic properties of the TGDs and abstract prop-
erties related to the behavior of reasoning mechanisms [3, 2, 12, 4, 10]. In this Section
we recall several Datalog+/– sublanguages and analyze the data complexity of query
answering under the different inconsistency-tolerant semantics described in Section 3.
Figure 1 shows the summary of the results obtained in this section.

4.1 Guarded Sets of TGDs

We first recall the notion of guardedness from [10]. A TGD σ is said to be guarded iff it
contains an atom in its body that contains all universally quantified variables of σ. The
leftmost such atom is the guard atom (or guard) of σ.

Computing the consisten answers and query answering under the ICons semantics
for guarded Datalog+/– was shown to be co-NP-complete in [22]. To establish mem-
bership in co-NP for consistent query answering, we can show a witness that consists
of a D′ ∈DRep(KB) for which (D′, ΣT ) 6|= Q. Note that D′ can be verified to be a
repair in polynomial time, since atoms from D can be added in turn and verified to give
rise to an inconsistency, as can (D′, ΣT ) 6|= Q be checked in polynomial time in the
guarded case.

Theorem 9 Let KB be a guarded Datalog+/– ontology, and Q be a BCQ. Deciding if
KB |=ICR Q is co-NP-complete.

Proof (sketch). Membership in co-NP for query answering under the ICR semantics
can be shown by guessing and verifying some D?⊆ Cn(D,ΣT ) with (D?, ΣT ) 6|= Q,
and, for everyα∈Cn(D,ΣT )−D?, someD′

α⊆DRep(KB) such thatα 6∈Cn(D′
α, ΣT ).

Note that the latter implies that
⋂
D′∈DRep(KB) Cn(D

′, ΣT )⊆D?. Hence, (D?, Σ) 6|=Q

implies KB 6|=ICRQ. The above guessing and verifying can be done in polynomial time
in the data complexity in the guarded case. Membership in co-NP for the ICons seman-
tics can be shown analogously (without computing the closure of the repairs).

Finally, co-NP hardness for consistent query answering is shown in [20] even for
ground atomic queries; by Proposition 7, this means that it is also hard for DL-Litecore
under the ICR semantics, and since this language is a subset of guarded Datalog+/– we
can conclude that query answering under the ICR semantics is also co-NP hard in the
guarded case. 2

A TGD linear iff it contains only a single atom in its body. Furthermore, sets of
multi-linear TGDs correspond to TGDs whose bodies contain only guards. For lin-
ear Datalog+/– co-NP completeness for consistent query answering was shown in [22]
and FO-rewritability for linear Datalog+/– ontologies under the ICons semantics was
shown in [23]. For multi-linear sets of TGDs we have the following results.

Theorem 10 Let KB be a multi-linear Datalog+/– ontology, and Q be a BCQ. Decid-
ing if (a) KB |=Cons Q and if (b) KB |=ICR Q are both co-NP-complete. Also, (c)
query answering for BCQs under ICons is FO-rewritable.



Proof (sketch). Since linear is a sublanguage of multi-linear Datalog+/– [10], we can
easily show that consistent query answering is co-NP-hard for the multi-linear case.
Membership in co-NP can be shown analogously to the linear/guarded case. Further-
more, by Proposition 8 we now that query answering under the ICons semantics is also
FO-rewritable for the multi-linear case. Finally, following the same argument made for
guarded Datalog+/–, by Proposition 7 we conclude that query answering under the ICR
semantics is also co-NP hard in both the linear and multi-linear case. 2

4.2 Frontier-Restricted Sets of TGDs

The frontier of a TGD σ is the set of variables that occur both in the head and body of
σ. A TGD σ is frontier-one if its frontier is of size one.

Theorem 11 Let KB be a frontier-one Datalog+/– ontology, and Q be a BCQ. Decid-
ing if (a)KB |=Cons Q, (b)KB |=ICons Q, and (c)KB |=ICR Q are co-NP-complete.

Proof (sketch). Since classical query answering can be performed in polynomial time
in the data complexity for frontier-one ontologies [4], membership in co-NP for the
three problems can be shown similar to the way it is done for the guarded case. Hard-
ness can be shown analogously to the hardness proof for the guarded case in [22], with
a slight modification in the definition of the set of TGDs to ensure using frontier-one
TGDs. Query answering under the ICons semantics can be proved by reduction from
the k-clique problem of undirected graphs: the set of TGDs contains the characteriza-
tion of a clique of size k. Hardness in co-NP under the ICR semantics follows from the
fact that consistent query answering for frontier-one Datalog+/– is shown to be co-NP-
hard even for ground atomic queries and Proposition 7. 2

By noticing that the “shape” of derived facts depends only on how the frontier of
the TGDs is mapped (and not on how the whole body is mapped, since only the images
of the frontier are used to apply a TGD), one obtains a generalization of both fr1- and
guarded-rules: a TGD σ is frontier-guarded (fg) if there is an atom a in its body that
contains all variables in its frontier, i.e., vars(fr(σ)) ⊆ vars(a).

Theorem 12 Let KB be a frontier-guarded Datalog+/– ontology, and Q be a BCQ.
Deciding if (a) KB |=Cons Q, (b) KB |=ICons Q, and (c) KB |=ICR Q are co-NP-
complete.

Proof (sketch). Given that classical query answering can be performed in polynomial
time in the data complexity for frontier-guarded ontologies [4], membership in co-NP
for the three problems can easily be shown similarly to the guarded case. Furthermore,
hardness for the consistent query answering problem and query answering under the
ICons semantics can be proved by reduction from the corresponding problems for
frontier-one ontologies, whose data complexity was shown above. Hardness for query
answering under the ICR semantics follows from the fact that consistent query answer-
ing for frontier-guarded is shown to be co-NP-hard even for ground atomic queries and
Proposition 7. 2



4.3 Weakly- and Joint-Acyclic Sets of TGDs

Other tractable cases are obtained by restricting possible interactions between TGDs.
These interactions have been encoded in different directed graphs that represent encod-
ings of variable sharing between positions in predicates or the encoding of dependencies
between TGDs. Here we briefly recall the notion of (position) dependency graph [17].
The nodes in a dependency graph represent positions in predicates, i.e., the node (p, i)
represents a position i in predicate p. For each TGD σ and each variable X in body(σ)
occurring in position i, edges with origin (p, i) are built as follows: if X is in the fron-
tier of σ, there is an edge from (p, i) to each position of X in head(σ); furthermore,
for each existential variable Y in head(σ) occurring in position (q, j), there is a special
edge from (p, i) to (q, j). A set of rules is said to be weakly-acyclic if its dependency
graph has no cycle passing through a special edge. Weakly-acyclic sets of TGDs strictly
include both sets of full TGDs and acyclic sets of inclusion dependencies [17].

Theorem 13 Let KB be a weakly-acyclic Datalog+/– ontology, and Q be a BCQ. De-
ciding if (a) KB |=Cons Q, (b) KB |=ICons Q, and (c) KB |=ICR Q are co-NP-
complete.

Proof (sketch). Membership in co-NP for the three problems can be obtained in the
same way that is done for the guarded case since query answering for weakly-acyclic
sets of TGDs is in PTIME [15, 17]. As for co-NP hardness for consistent query answer-
ing, the reduction provided in [22] to show co-NP hardness can be used in this case
since the set of TGDs generated in the reduction is trivially a set of weakly-acyclic
set of TGDs. Co-NP hardness can be shown for the ICons by slightly modifying the
reduction in Theorem 11. Finally, co-NP hardness for the ICR semantics follows di-
rectly from the fact that consistent query answering for weakly-acyclic is shown to be
co-NP-hard even for ground atomic queries and Proposition 7. 2

Joint-acyclicity [19]. This class is obtained by simply shifting the focus from positions
to existential variables; that is, replacing the position dependency graph by the existen-
tial dependency graph, where the nodes are the existential variables occurring in TGDs.
This yields a finer analysis of potentially infinite creations of existential variables.

Theorem 14 Let KB be a joint-acyclic Datalog+/– ontology, and Q be a BCQ. Decid-
ing if KB |=Cons Q, KB |=ICons Q, and KB |=ICR Q are co-NP-complete.

Proof (sketch). Membership in co-NP for all three problems can be obtained in the
same way that is done for the guarded Datalog+/– since classical query answering for
joint-acyclic sets of TGDs is in PTIME [19]. co-NP hardness for all three problems
follows directly from the fact that joint-acyclic sets of TGDs strictly generalize weakly-
acyclic sets of TGDs. 2

4.4 Sticky Sets of TGDs

The stickiness property restricts multiple occurrences of variables (in the same atom or
in distinct atoms, i.e., in joins) in the TGD bodies. The class of sticky sets of TGDs is



defined in [11] by a syntactic criterion that is easily testable, which is as follows. For
every database D, assume that during the chase (or forward chaining processing) of D
regarding a set Σ of TGDs, we apply a TGD σ ∈ Σ which has a variable V appearing
more than once in its body. Assume also that V maps (via a homomorphism) on the
symbol z, and that by virtue of this application the atom a is generated. In this case, for
each atom b ∈ body(σ) we say that a is derived from b. Then, z appears in a, and in
all atoms resulting from some derivation sequence starting from a, “sticking” to them
(hence the name “sticky” sets of TGDs). We mark the variables that occur in the body
of the TGDs of ΣT according to the following marking procedure. First, for each TGD
σ ∈ ΣT and for each variable V in body(σ), if there exists an atom a in head(σ) such
that V does not appear in a, then we mark each occurrence of V in body(σ). Now, we
apply exhaustively (i.e., until a fixpoint is reached) the following step: for each TGD
σ ∈ ΣT , if a marked variable in body(σ) appears at position π, then for every TGD
σ′ ∈ ΣT (including the case σ = σ′), we mark each occurrence of the variables in
body(σ′) that appear in head(σ′) at the same position π. We say that ΣT is sticky if
there is no TGD σ ∈ ΣT such that a marked variable occurs in body(σ) more than once.

Theorem 15 Let KB be a sticky Datalog+/– ontology, and Q be a BCQ. Deciding if
(a) KB |=Cons Q and if (b) KB |=ICR Q are both co-NP-complete. Furthermore, (c)
query answering for BCQs under ICons is FO-rewritable.

Proof (sketch). Hardness in co-NP for consistent query answering follows from the
fact that sticky Datalog+/– generalizes DL-Litecore (the translation of a DL-Litecore
TBox yields sticky sets of TGDs), a DL for which the problem is co-NP-complete [20].
Membership can be shown analogously to the guarded case since query answering for
sticky sets of TGDs is in PTIME [12]. FO-rewritability for the ICons semantics follows
from Proposition 8. Finally, consistent query answering is co-NP hard even for ground
atomic queries [20]; by Proposition 7, this means that it is also hard for DL-Litecore
under the ICR semantics. Therefore, query answering under the ICR semantics is also
co-NP hard in the sticky case. 2

Finally, sticky sets of TGDs are not expressive enough to model simple cases such as
the following linear TGD p(X,Y,X) → ∃Zq(Y, Z); variable X is marked and there-
fore the stickiness condition violated. The class of sticky-join TGDs extends both linear
and sticky TGDs preserving tractability (FO-rewritability) for query answering [12]. As
in the case of sticky, sticky-join sets of TGDs are defined by a testable condition based
on variable-marking, though a more sophisticated one. For lack of space we omit the
formal definition of such marking (cf. [12] for more details on this class).

Theorem 16 Let KB be a sticky-join Datalog+/– ontology, andQ be a BCQ. Deciding
if (a) KB |=Cons Q and if (b) KB |=ICR Q are both co-NP-complete. Also, (c) query
answering for BCQs under ICons is FO-rewritable.

Proof (sketch). Membership in co-NP for consistent query answering and query an-
swering under the ICR semantics can be shown analogously to the guarded case, since
query answering for weakly-sticky sets of TGDs is in PTIME [12]. Hardness for co-
NP in both cases follows directly from the fact that sticky-join Datalog+/– generalizes



linear Datalog+/–, a fragment for which it is already shown that the problems are co-
NP-complete (cf. Theorem 10). FO-rewritability for the ICons semantics follows from
Proposition 8. 2

The class of weakly-sticky [12] TGDs generalizes both weakly-acyclic and sticky
sets of TGDs. Intuitively, in a weakly-sticky set of TGDs, the variables that appear
more than once in the body of a TGD are either non-marked (as defined above for sticky
TGDs), or occur at positions where a finite number of distinct values can appear during
the chase. Lastly, we look at weakly-sticky-join [12] sets of TGDs, which generalize
both weakly-sticky sets and sticky-join sets.

Theorem 17 Let KB be a weakly-sticky(-join) Datalog+/– ontology, and Q be a BCQ.
Deciding if (a) KB |=Cons Q, (b) KB |=ICons Q, and (c) KB |=ICR Q are co-NP-
complete.

5 Summary and Outlook

In this work, we have studied the problem of inconsistency-tolerant query answering of
BCQs for a wide range of tractable fragments of Datalog+/–. For each of the 11 lan-
guages chosen, we have determined the data complexity of consistent query answering
and of query answering under two of its approximations proposed recently in the litera-
ture: ICons (intersection of repairs) and ICR (intersection of closed repairs) semantics.
As has been shown in previous work, the problem of computing consistent answers is a
hard problem even for very simple languages; therefore, the results obtained for this se-
mantics are not surprising, though the tractability of query answering in these languages
at least yields non-deterministic polynomial time upper bounds. On the other hand, we
see that for the ICons semantics, there is a large gap in the data complexity, when
going from FO-rewritable fragments of Datalog+/– to those for which classical query
answering is PTIME-complete. Finally, for the chosen languages, the ICR semantics
proved to be as hard as the consistent answers to compute. These results are suggestive,
showing that it is still necessary to look for alternative inconsistency-tolerant semantics
that provide a better tradeoff between quality of answers and efficiency.

The present work can be continued along several lines. For instance, there are sev-
eral more inconsistency-tolerant semantics that would be interesting to analyze for this
set of languages. Furthermore, it would be very important for practical purposes to
search for other fragments of Datalog+/– that allow for tractable query answering un-
der any of the current semantics existing in the literature. The complexity results of this
paper provide us with a direction for this search.
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