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Abstract. We study the problem of answering instance queries over
non-Horn ontologies by rewriting them into Datalog programs or First-
Order queries (FOQs). We consider the basic non-Horn language ELU ,
which extends EL with disjunctions. Both Datalog-rewritability and FO-
rewritability of instance queries have been recently shown to be decidable
for ALC ontologies (and hence also for ELU); however, existing decision
methods are mainly of theoretical interest. We identify two fragments of
ELU for which we can compute Datalog-rewritings and FO-rewritings of
instance queries, respectively, by means of a resolution-based algorithm.

1 Introduction

We study the problem of answering queries over DL ontologies by rewriting
them into a First-Order query (FOQ) or a Datalog program. On the theoretical
side, rewriting queries into an FOQ or a Datalog program ensures tractability of
query answering in terms of data complexity. On the practical side, it allows one
to reuse optimised data management systems, namely RDBMSs in the case of
FOQs and rule-based systems such as OWLim or Oracle’s Semantic Data Store
in the case of Datalog.

The problem of ontology-based query answering via query rewriting has so
far been mainly studied for Horn DLs. FO-rewritability is ensured for logics of
the DL-Lite family [5] and query rewriting algorithms in these DLs have been
implemented in systems such as QuOnto [1], Presto [17], Quest [16], Rapid [6],
and Owlgres [20]. Datalog rewritability is ensured for logics of the EL family, as
well as more expressive languages such as Horn-SHIQ [11]; optimised algorithms
have been implemented in systems such as Requiem [15] and Clipper [10]. FO-
rewritability has also been studied as a decision problem for logics of the EL-
family [3], where tight complexity bounds have been shown.

Horn DLs, however, cannot capture disjunctive knowledge, such as ‘every
student is either a graduate or an undergraduate’. As a consequence, ontologies
capturing disjunctive knowledge cannot be processed using existing rewriting
techniques. Little is known about how to compute FO and Datalog rewritings for
non-Horn ontologies, and first results have been obtained only recently. Instance
queries (i.e., queries of the form A(x) with A a concept name) are known to be
FO-rewritable w.r.t. ontologies expressed in certain logics of the DL-Litebool fam-
ily —the extension of DL-Lite logics with disjunction [2]—, and a goal-oriented



resolution algorithm for computing rewritings w.r.t. such logics has been pro-
posed in [8]. In contrast, instance queries w.r.t. ontologies expressed in the basic
non-Horn DL ELU are not generally rewritable into Datalog: a result that holds
regardless of any complexity-theoretic assumptions [8]. While FO and Datalog
rewritability of instance queries w.r.t. ALC ontologies have been proved to be
decidable [4], the decision methods in [4] are problematic in practice as their
first step, translation to CSP, has exponential best-case complexity. Finally, for
certain classes of conjunctive queries, query answering over non-Horn ontologies
can be reduced to knowledge base consistency [13]. This approach, however, does
not generally ensure tractability in terms of data complexity.

In this paper, we are interested in ontologies formulated in the basic non-Horn
DL ELU . For simplicity, we focus on instance queries of the form A(x). In gen-
eral, however, our results apply to ground queries, where all variables are required
to be mapped to constants; such queries form the basis of the standard query
language SPARQL. Our main result is the identification of two sufficient condi-
tions on ELU-ontologies that ensure FO-rewritability and Datalog rewritability
of instance queries, respectively. Furthermore, we provide resolution-based algo-
rithms that can be used for computing the corresponding rewritings in case our
sufficient conditions are fulfilled. Our algorithms build on the generic resolution-
based technique proposed in [8].

This paper is accompanied with an appendix containing the proofs of our
technical results.

2 Preliminaries

We consider First-Order logic without equality and function symbols. Variables,
terms, (ground) atoms, literals, formulae, sentences, intepretations, models and
entailment are defined as usual. An ABox is a finite set of ground atoms (called
facts). We also adopt standard notions of (Horn) clauses, (variable) substitutions,
and most general unifiers (MGUs). Positive factoring (PF) and binary resolution
(BR) are as follows, where σ is the MGU of atoms A and B:

PF:
C ∨A ∨B
Cσ ∨Aσ

BR:
C ∨A D ∨ ¬B

(C ∨D)σ

A clause C is a tautology if it contains literals A and ¬A. A clause C subsumes
a clause D if a substitution σ exists such that each literal in Cσ occurs in D.
Furthermore, C θ-subsumes D if C subsumes D and C has no more literals
than D. Clause C is redundant in a set of clauses if C is a tautology or if C is
θ-subsumed by another clause in the set. The condensation of a clause C is the
clause D with the least number of literals such that D ⊆ C and C subsumes D.

The Description Logic ELU . We assume familiarity with standard DLs; here,
we briefly recapitulate the syntax of ELU . An ELU-concept is an expression of
the form >, A, C1 u C2, C1 t C2, or ∃R.C, where A is a concept name, C(i)

are concepts, and R is a role name. An ELU-TBox T is a finite set of GCIs
of the form C1 v C2 where C1 and C2 are ELU-concepts. An ELU-TBox is



normalised it it contains only axioms of the form ∃R.A v B, A v ∃R.B, anddn
i=1Ai v

⊔m
j=1Bj , where A(i) and B(j) are either named or >. Each ELU-TBox

T can be transformed in polynomial time into a normalised ELU-TBox that is
a conservative extension of T . An ELU-TBox T is linear if conjunction u does
not occur on the left-hand side of a GCI in T .

Rules. A rule is a First-Order sentence of the form ∀x.∀z.[ϕ(x, z) → ψ(x)],
where tuples of variables x and z are disjoint, ϕ(x, z) is a conjunction of atoms,
and ψ(x) is a disjunction of atoms. Formula ϕ is the body of r, formula ψ is
the head of r, and quantifiers in a rule are omitted for brevity. Furthermore,
we often abuse notation and treat a rule and its equivalent clause as synonyms.
A rule is Datalog if ψ(x) is a single atom, and it is disjunctive otherwise. A
(Datalog) program is a finite set of (Datalog) rules. A program is monadic if
every predicate occurring in the head of a rule is unary.

An ELU-program consists of the following kinds of rules: (i)
∧n
i=1Ai(x) →∨m

j=1Bj(x) and (ii) R(x, y)∧A(y)→ B(x), where the atom A(y) can be omitted.
For convenience, we use the unary atom >(x) to denote an empty rule body. An
EL-program is an ELU-program that is also Datalog. Finally, an ELU-program
is linear if conjunction does not occur on the left-hand side of a rule of type (i).

Queries. An (instance) query is a unary atom Q(x). A constant c is an answer
to Q(x) w.r.t. a set of FO sentences F and an ABox A if F ∪ A |= Q(c). The
set of answers to Q relative to F and A is denoted as cert(Q(x),F ,A).

FO and Datalog Rewritings. For an ABox A, let IA the interpretation cor-
responding to A in the obvious way. An FO formula ϕ(x) with one free variable
is an FO-rewriting of a query Q(x) w.r.t. an ELU-TBox (or, equivalently, an
ELU-program) T if the following condition holds for every constant c and ABox
A: c ∈ cert(Q, T ,A) iff IA |= ϕ(c). Furthermore, we say that ϕ(x) is a UCQ-
rewriting if it is of the form ϕ(x) =

∨n
i=1 ϕi(x) where each ϕi(x) is constructed

using only conjuction and existential quantification. We say that Q(x) is FO-
rewritable w.r.t. T if an FO-rewriting of Q(x) w.r.t. T exists. Finally, T is
FO-rewritable if for each concept name A in T the query A(x) is FO-rewritable
w.r.t. T . A Datalog program P is a rewriting of a query Q(x) relative to a TBox
(or, equivalently, an ELU-program) T if cert(Q(x), T ,A) = cert(Q(x),P,A) for
every ABox A. We say that Q(x) is Datalog-rewritable w.r.t. T if a Datalog
rewriting of Q(x) w.r.t. T exists. Finally, P is a rewriting of T if it is a rewriting
for each query A(x) w.r.t. T , with A a concept name in T ; TBox T is Datalog-
rewritable if a Datalog rewriting of T exists. As observed in [4], it follows from
the homomorphism preservation theorem for finite structures [18] that each FO-
rewritable query is also UCQ rewritable and hence Datalog rewritable as well.

3 Computing Rewritings via Resolution

We next recapitulate the generic resolution-based technique proposed in [8],
which takes a TBox T and attempts to rewrite it into a Datalog program. If T
is restricted to be in ELU , this technique consists of the following two steps.



Procedure 1 Compile-Horn
Input: S: set of clauses
Output: SH : set of Horn clauses

1: SH := {C ∈ S | C is a Horn clause and not a tautology}
2: SH := {C ∈ S | C is a non-Horn clause and not a tautology}
3: repeat
4: F := factors of each C1 ∈ SH non-redundant in SH ∪ SH

5: R: = resolvents of each C1 ∈ SH and C2 ∈ SH ∪ SH not redundant in SH ∪ SH

6: for each C ∈ F ∪R do
7: C′ := the condensation of C
8: Delete from SH and SH all clauses θ-subsumed by C′

9: if C′ is Horn then SH := SH ∪ {C′}
10: else SH := SH ∪ {C′}
11: until F ∪R = ∅
12: return SH

Step 1: From DLs to Disjunctive Datalog. First, the algorithm in [12]
is applied to transform T into an ELU-program D that entails the same facts
as T w.r.t. every ABox. By eliminating the positive occurrences of existential
quantifiers, one thus reduces the problem of rewriting the DL TBox T to the
problem of rewriting the disjunctive program D.

Step 2: From Disjunctive Datalog to Datalog. Second, the program D
is transformed into a Datalog program P using a variant of the mainstream
knowledge compilation algorithms proposed in [19] for propositional clauses,
and extended in [9] to First-Order clauses (but without termination guarantees).
Procedure 1 summarises (a slight variation of) the technique from [9]. Roughly
speaking, the procedure applies binary resolution and factoring and keeps only
the consequences that are not redundant. Unlike unrestricted resolution, the
procedure never resolves two Horn clauses. The main property of Procedure 1
shown in [9] is that, even if it never terminates, each Horn consequence of the
input S will also eventually become entailed by SH . In [8], it was shown that
Procedure 1 also enjoys the following key property: if the program D is given as
input and the procedure terminates, then the output P is a Datalog rewriting
of D. In essence, this result implies that compilation into Horn clauses can be
done in an ABox independent way: D and P can be combined with an arbitrary
ABox and still entail the same facts.

Example 3.1 We use the ELU-programs D1 and D2 as running examples:

D1 = { C(x)→ A(x) ∨B(x) D2 = { >(x)→ A(x) ∨B(x)

R(x, y) ∧A(y)→ H(x) R(x, y) ∧A(y)→ B(x)

R(x, y) ∧B(y)→ D(x) R(x, y) ∧B(y)→ A(x) }
R(x, y) ∧D(y)→ H(x) }



When applied to program D1, Procedure 1 terminates with the following sets D1
H

and D1
H of disjunctive and Datalog rules, respectively:

D1
H

= { C(x)→ A(x) ∨B(x) D1
H = { R(x, y) ∧A(y)→ H(x)

R(x, y) ∧ C(y)→ H(x) ∨B(y) R(x, y) ∧B(y)→ D(x)

R(x, y) ∧ C(y)→ D(x) ∨A(y) R(x, y) ∧D(y)→ H(x)

R(x, y) ∧R(z, y) ∧ C(y)→ H(x)∨D(z) } R(x, z)∧R(x, y)∧R(z, y)∧C(y)

→ H(x) }

The results proved in [8] imply that D1
H is a Datalog rewriting of D1. In contrast,

Procedure 1 does not terminate when given D2 as input. Although the mutually
recursive Datalog rules in D2 are never resolved directly with each other, they
can interact via the program’s (only) disjunctive rule. As a result, Procedure 1
will eventually derive each of the following (infinitely many) rules, for each even
number n and for each Z ∈ {A,B}:

R(xn, x0) ∧
n∧
i=1

R(xi, xi−1)→ Z(xn)

4 Sufficient Conditions for Rewritability

In what follows, we present two conditions on ELU-programs that ensure FO and
Datalog-rewritability, respectively. Both conditions come with resolution-based
algorithms for computing rewritings. To ensure termination of resolution, both
our conditions apply to linear ELU-programs only. As we discuss later on in §5,
termination in the non-linear case becomes much more problematic, and it is
left for future work.

4.1 FO Rewritability

As shown by Bienvenu et al. [3], if an instance query A(x) is FO-rewritable w.r.t.
an EL-TBox, then there exists a tree-shaped UCQ that is an FO-rewriting for the
given query and TBox. This property was critical to the study of FO-rewritability
in the context of EL as it implies a characterisation of FO-rewritability in terms
of tree-shaped ABoxes. Since only tree-shaped ABoxes are relevant, one can
exploit standard tree automata machinery to study the problem.

Once disjunctions come into play, however, this key property seems to break.
As demonstrated by the following example, there are FO-rewritable ELU-TBoxes
that do not seem to be rewritable into tree-shaped UCQs. Thus, the machinery
developed in [3] for EL does not seem to extend to ELU .

Example 4.1 The query H(x) is FO-rewritable w.r.t. our example program D1.
The following UCQ ϕ(x) = ϕ1(x)∨ϕ2(x)∨ϕ3(x)∨ϕ4(x)∨ϕ5(x) can be obtained



by unfolding the Datalog rewriting obtained by Procedure 1 on D1:

ϕ1(x) = H(x) ϕ4(x) = ∃y.∃z.R(x, y) ∧R(x, z) ∧R(z, y) ∧ C(y)

ϕ2(x) = ∃y.R(x, y) ∧A(y) ϕ5(x) = ∃y.∃z.R(x, y) ∧R(y, z) ∧B(z)

ϕ3(x) = ∃y.R(x, y) ∧D(y)

Clearly, ϕ4(x) is not tree-shaped. Moreover, H(x) does not seem to have a tree-
shaped UCQ-rewriting as defined in [3].

Although a linear ELU-program D that is FO-rewritable may not have a
tree-shaped rewriting, linearity allows us to restrict resolution proofs in a critical
way. We can show that each derivation from D via resolution and condensation
only (i.e., no factoring) involves only tree-shaped rules. This implies that each
non-tree rule derived by resolution and factoring is a factor of a tree-shaped rule.

In the following, we define a condition on linear ELU programs that guar-
antees FO-rewritability. When applied to a program D satisfying the condition
(such as D1 in our running example), Procedure 1 will terminate: the size of de-
rived tree-shaped rules will be limited by the size of D. Furthermore, the Datalog
program obtained as output will be bounded for every predicate in the standard
sense [14]. Our condition is defined as given next.

Definition 4.2. The dependency graph of a linear ELU-program D is the least
directed edge-labeled graph GD = (V,E, µ) satisfying the following conditions:

1. each unary predicate occurring in D is a node in V ;
2. (A,B) ∈ E ∩ µ for each rule in D of the form R(x, y) ∧A(y)→ B(x);
3. (A,Bi) ∈ E with i ∈ [1, n] for each rule in D of the form A(x)→

∨n
i=1Bi(x).

Edges contained in the labelling µ are called transfer edges; all remaining edges
are called propositional edges. A transfer cycle is a simple cycle that contains
at least one transfer edge. The program D is acyclic if GD contains no transfer
cycle. Finally, the transfer depth of a unary predicate A in an acyclic program
D is the maximal number of transfer edges on a path in GD ending in A.

Intuitively, the maximal transfer depth of a predicate in an acyclic program es-
tablishes a bound on the role depth of the tree-shaped rules that can be generated
by Procedure 1. Termination of Procedure 1 is then ensured by condensation,
which bounds the branching factor of rules in terms of their depth.

Example 4.3 Consider the program D1 from Example 3.1. The dependency
graph for D1 is given next, where transfer edges are dashed. Clearly, D1 is acyclic
and predicate H has transfer depth 2.

C A H

B D



Procedure 2 Rewrite-UCQ
Input: D: a linear, acyclic ELU-program;
A: a unary predicate occurring in D
Output: ϕ(x): a UCQ

1: P := Compile-Horn(D)
2: P ′ := {A(x) → Q(x)} where Q is a fresh unary predicate
3: P ′′ := ∅
4: repeat
5: Select some r ∈ P ′

6: N := the resolvents of r with clauses in P that are not subsumed in P ′ ∪ P ′′

7: P ′ := (P ′ \ {r}) ∪N
8: P ′′ := P ′′ ∪ {r}
9: until P ′ = ∅

10: ϕ(x) :=
∨
{ ∃y. ψ(x,y) | ∀x.∀y. ψ(x,y) → Q(x) ∈ P ′′ }

11: return ϕ(x)

Rules derived by Procedure 1 on D1 have depth at most 2 (see Example 3.1).

Procedure 2 computes a UCQ rewriting of a query A(x) relative to an acyclic
program D. On input D and A, we first apply Procedure 1 to compute a Datalog
rewriting P of D; as already seen, termination of this first step is guaranteed.
Predicate A is then unfolded in P using standard techniques, as shown in Lines
(2-10); unfolding terminates iff the predicate A is bounded in P [14, 7]. To show
termination of unfolding, we observe that the depth of the rules in P still cannot
exceed the transfer depth of the predicates in the dependency graph of D; hence,
the loop in Lines (4)-(9) only derives finitely many rules modulo subsumption.
The properties of the procedure are thus as follows.

Theorem 4.4. Given an acyclic ELU-program D and a unary predicate A in D,
Procedure 2 terminates and returns a UCQ rewriting of A(x) w.r.t. D.

Example 4.5 When applied to the predicate H and the program D1 from Ex-
ample 3.1, Procedure 2 first calls Procedure 1, which returns the program D1

H

from Example 3.1 as a Datalog rewriting of D1. So, P is initialised with D1
H

and P ′ is set to {H(x) → Q(x)}. On these values, unfolding terminates after
five iterations of the main loop with the following rules in P ′′:

H(x)→ Q(x) R(x, z) ∧R(x, y) ∧R(z, y) ∧ C(y)→ Q(x)

R(x, y) ∧A(y)→ Q(x) R(x, y) ∧R(y, z) ∧B(z)→ Q(x)

R(x, y) ∧D(y)→ Q(x)

This yields precisely the UCQ ϕ(x) given in Example 4.1.

4.2 Datalog Rewritability

Our Datalog-rewritability condition relaxes the acyclicity condition from §4.1
by allowing certain kinds of cyclic programs. Intuitively, we allow programs that



can be separated into two parts: one that may contain disjunctive rules but
no transfer cycles, and another one that contains only Datalog rules, but may
contain transfer cycles. We call such programs separable.

Definition 4.6. Let D be a linear ELU-program and let D∨ be the smallest
subset of D such that

1. each disjunctive rule in D is contained in D∨; and
2. no unary predicate in D \ D∨ occurs in the body of a rule in D∨.

Program D is separable if D∨ is acyclic.

Example 4.7 Program D2 from our running example 3.1 is not FO-rewritable;
however, it is separable: D2

∨ = {>(x)→ A(x)∨B(x)} and it is therefore acyclic
as in Definition 4.2.

We deal with separable programs by eliminating cycles from their Datalog
part. Cycle elimination is based on the observation that every linear EL-program
P can be seen as a labeled transition system TP with unary predicates as states
and rules as transitions labeled by binary predicates (or > if the rule contains
no binary predicate). Given a unary predicate B in P, an ABox A, and an
individual b, every derivation of B(b) from P ∪ A corresponds to a path ending
in B in TP ; hence, paths in TP encode resolution proofs.

The set of all possible derivations of an assertion B(b) from an assertion
A(a) by the rules in P corresponds to the regular language accepted by the non-
deterministic finite automaton constructed from TP by taking A as the unique
initial state, and B as the unique accepting state.

Definition 4.8. Let D be a linear ELU-program and let 〈A,B〉 be a pair of
unary predicates occurring in D. The automaton for D relative to 〈A,B〉 is
the non-deterministic finite word automaton AutD(A,B) = 〈S, Γ,→, {A}, {B}〉
defined as follows: the set of states S consists of the unary predicates in D; the
alphabet Γ is the set of binary predicates in D plus the special symbol >; the
(unique) initial and final states are A and B respectively; finally, the transition
relation → consists of the following transitions:

– C →> D for each EL-rule C(x)→ D(x) in D;
– C →R D for each EL-rule R(x, y) ∧ C(y)→ D(x) in D.

Finally, we denote with L(AutD(A,B)) the language accepted by AutD(A,B).

Example 4.9 The automaton for D2 relative to 〈A,B〉 is given below:

Astart B

R

R



The automata for 〈A,A〉, 〈B,A〉, and 〈B,B〉 contain exactly the same states and
transitions and only differ on the particular choice of initial and final state.

The language L(AutD(A,B)) is regular, and hence can be described by means
of some regular expression over the alphabet Γ of the automaton. We adopt the
following definition of regular expressions over Γ , where α ∈ Γ and the atomic
expression ∅ denotes the empty language.

e ::= α | ∅ | ee | e+ e | e∗

With each regular expression e over Γ we uniquely associate a (fresh) binary
predicate Ne and a Datalog program Pe that defines Ne as shown next.

Definition 4.10. Let D be a linear ELU-program and let e be a regular expres-
sion over the binary predicates in D and the symbol >. The Datalog program Pe
corresponding to e is defined inductively as follows:

P∅ = ∅
P> = {>(x)→ N>(x, x)}
PR = {R(x, y)→ NR(y, x)}
Pe1e2 = Pe1 ∪ Pe2 ∪ {Ne1(x, y) ∧Ne2(y, z)→ Ne1e2(x, z)}
Pe1+e2 = Pe1 ∪ Pe2 ∪ {Ne1(x, y)→Ne1+e2(x, y), Ne2(x, y)→Ne1+e2(x, y)}
Pe∗ = Pe ∪ {>(x)→ Ne∗(x, x), Ne(x, y) ∧Ne∗(y, z)→ Ne∗(x, z)}

Example 4.11 The language of the automaton AutD2(A,B) in Example 4.9
can be captured by the regular expression e〈A,B〉 = R(RR)∗. The corresponding
program Pe〈A,B〉 consists of the following Datalog rules:

R(x, y)→ NR(y, x) (1)

NR(x, y) ∧NR(y, z)→ NRR(x, z) (2)

>(x)→ N(RR)∗(x, x) (3)

NRR(x, y) ∧N(RR)∗(y, z)→ N(RR)∗(x, z) (4)

NR(x, y) ∧N(RR)∗(y, z)→ NR(RR)∗(x, z) (5)

The language for AutD2(A,A) is captured by e〈A,A〉 = (RR)∗, which is a subex-
pression of e〈A,B〉; the program Pe〈A,A〉 thus consists of rules (1)-(4). Symmetry
in the automaton’s transitions implies Pe〈B,A〉 = Pe〈A,B〉 and Pe〈B,B〉 = Pe〈A,A〉 .

Let D be a separable program and D∨ be the disjunctive part of D. Since
for each pair A,B in D \ D∨ we have that L(AutD(A,B)) can be described by
some regular expression e〈A,B〉, all ways in which an assertion A(a) can imply
B(b) can be summarised by the single rule Ne〈A,B〉(x, y) ∧ A(x) → B(y). Thus,
the disjunctive program D′ defined as the union of D∨, all programs P〈A,B〉,
and all rules Ne〈A,B〉(x, y) ∧ A(x) → B(y) has the same Horn consequences as
D. To obtain such Horn consequences, we could thus apply Procedure 1 to D′;
however, to ensure termination we do the following instead:



Procedure 3 Rewrite-Datalog
Input: D: a separable ELU-program;
Output: P: a Datalog program

1: Ξ(D), Ω(D) := ∅
2: for each pair of unary predicates 〈A,B〉 do
3: AutD(A,B) := finite word automaton for D relative to 〈A,B〉
4: Construct a regular expression e〈A,B〉 equivalent to AutD(A,B)
5: Construct Datalog program Pe〈A,B〉 and
6: Ξ(D) := Ξ(D) ∪ Pe〈A,B〉
7: Ω(D) := Ω(D) ∪ {Re〈A,B〉 ∧A(x) → QB(y)}
8: P := Compile-Horn(D∨ ∪Ω(D))
9: P := P ∪ Ξ(D)

10: for each unary predicate A in D, replace QA with A in P
11: return P

– in each rule Ne〈A,B〉(x, y)∧A(x)→ B(y) in D′, we replace predicate B with
a fresh predicate QB , which ensures acyclicity of the resulting program; and

– we apply Procedure 1 only to the monadic rules inD′, thus ignoring programs
P〈A,B〉 for the purpose of resolution.

The algorithm based on these ideas is given by Procedure 3. In Lines (1)-(7),
the procedure computes the following intermediate programs, where A,B range
over the unary predicates in the input:

Ω(D) =
⋃
〈A,B〉

{Ne〈A,B〉(x, y) ∧A(x)→ QB(y)} Ξ(D) =
⋃
〈A,B〉

Pe〈A,B〉

In Line (8), our algorithm invokes Procedure 1 to compute the Horn consequences
of D∨ ∪Ω(D). The following lemma establishes termination of this step.

Lemma 4.12. Let D be a linear ELU-program that is separable. Then, Proce-
dure 1 terminates on D∨ ∪Ω(D).

The following lemma shows that no Horn consequence is lost by applying
Procedure 1 to D∨∪Ω(D) only, and appending the non-monadic program Ξ(D)
only afterwards.

Lemma 4.13. Let D be a separable ELU-program. Let P be the union of Ξ(D)
and the output of Procedure 1 on D∨ ∪ Ω(D). Then, for every query A(x) and
every ABox A, we have cert(A(x),D,A) = cert(QA(x),P,A).

Finally, in order to obtain a proper rewriting, in Line (10) we eliminate the
auxiliary unary predicates QA before returning the output.

Theorem 4.14. On input a separable ELU-program D, Procedure 3 returns a
Datalog rewriting of D.



Example 4.15 For our example program D2, we have the following:

Ξ(D2) =
⋃
〈A,B〉

Pe〈A,B〉 = PR(RR)∗ = {(1), (2), (3), (4), (5)}

Ω(D2) = {NR(RR)∗(x, y) ∧A(x)→ QB(y); NR(RR)∗(x, y) ∧B(x)→ QA(y);

N(RR)∗(x, y) ∧A(x)→ QA(y); N(RR)∗(x, y) ∧B(x)→ QB(y)}

When applied to D2
∨ ∪ Ω(D2), Procedure 1 computes the following additional

Datalog rules:

NR(RR)∗(x, y) ∧N(RR)∗(x, y)→ QA(y) (6)

NR(RR)∗(x, y) ∧N(RR)∗(x, y)→ QB(y) (7)

Procedure 3 finally returns a Datalog program P consisting of rules Ξ(D2),
Ω(D2), as well as rules (6)-(7) with predicates QA and QB replaced with A
and B, respectively. Program P is a rewriting of D2.

5 Discussion and Future Work

In this paper, we have presented two sufficient conditions for FO and Datalog
rewritability of instance queries w.r.t. ELU-ontologies. Our results are still rather
preliminary, and we are currently working on extending them in several ways.

First, we are confident that our sufficient conditions can be extended to cover
also non-linear ELU-programs, as well as more expressive DLs such as ALCHI.
Devising a resolution-based rewriting algorithm in such extended setting be-
comes, however, a much more challenging task.

Example 5.1 Consider the nonlinear ELU-program D3 with the following rules:

>(x)→ A(x) ∨B(x) R(x, y) ∧A(y)→ D(x) B(x)→ A(x)

D(x)→ H1(x) ∨H2(x) D(x) ∧ E(x)→ H(x) D(x)→ E(x)

This program is FO-rewritable: the non-linear rule D(x) ∧E(x)→ H(x) can be
replaced with D(x)→ H(x) to obtain an equivalent linear program that satisfies
our sufficient condition in Section 4.1. Procedure 1, however, does not terminate
when given D3 as input; in particular, Procedure 1 will compute the following
infinite family of disjunctive rules for each n > 1:[

n∧
k=1

R(yk, xk) ∧R(yk−1, xk)

]
∧D(yn)→

[
n∨
k=1

H(yk)

]
∨H1(y0) ∨H2(y0)

Second, it would be interesting to devise a resolution-based decision procedure
for FO and Datalog rewritability for ALC ontologies; this is possible, since de-
cidability has been recently shown. Finally, we are planning to implement our
resolution algorithms and test them in practice.
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A Proofs for Section 4.1 (FO Rewritability)

Given a disjunctive program D, we write Σ(D) for the set of all predicate symbols
in D. We call Σ(D) the signature of D. If D is an ELU-program, we partition
Σ(D) into Σc(D), the set of all unary predicates (concept names) in D, and
Σr(D), the set of all binary predicates (role names) in D.

We write CloR(D) for the set of all rules derivable from D by binary reso-
lution, CloF (D) for the set of all rules derivable from D by positive factoring,
and CloRF (D) for the set of all rules derivable from D by binary resolution and
positive factoring.

Let x be a sequence of variables and let ϕ be a formula. We write x|yz and ϕ|yz
for the result of substituting y for z in x and ϕ, respectively. We write FV(ϕ) for
the set of variables that occur free in ϕ. Since we only consider formulas that are
conjunctions or disjunctions of atoms, we can also view them as sets of atoms,
writing A ∈ ϕ for “A occurs in ϕ”. The notation A ∈ r for a rule r is defined
analogously.

Proposition A.1. Let D be a linear ELU-program. Every rule in CloR(D) has
the form A(x0) ∧ ϕ →

∨n
i=1Bi(xi) where ϕ is a conjunction of binary atoms

such that {x0, . . . , xn} ⊆ FV(ϕ).

Given a rule r of the form A(x0) ∧ ϕ →
∨n
i=1Bi(xi), where ϕ is a conjunction

of binary atoms such that {x0, . . . , xn} ⊆ FV(ϕ), we define:

Gr := (FV(ϕ), { (x, y) | ∃R : R(y, x) ∈ ϕ })

We call r tree-shaped if the following conditions are satisfied:

1. Gr is a tree with x0 as its root and x1, . . . , xn as its leaves.
2. If {R1(x, y), R2(x, y)} ⊆ ϕ, then R1 = R2.

The depth of r is defined as the depth of Gr.

Lemma A.2. Let D be a linear ELU-program. Every rule in CloR(D) is tree-
shaped.

Proof. By induction on the derivation of r ∈ CloR(D). Clearly, all rules in D are
tree-shaped. So, w.l.o.g., let r be a resolvent or r1 = A(x) ∧ ϕ1 →

∨m
i=1Bi(xi)

and r2 = B1(y) ∧ ϕ2 →
∨n
i=1 Ci(yi) on B1(x1) and B1(y), respectively. By the

inductive hypothesis, r1 and r2 are tree-shaped. Since FV(ϕ1) and FV(ϕ2) are
assumed to be disjoint and the tree corresponding to r2 is rooted at y, the graph
(FV(ϕ1 ∧ (ϕ2|x1

y )), { (x, y) | ∃R : R(y, x) ∈ ϕ1 ∧ (ϕ2|x1
y ) }) is a tree rooted at x

that has x2, . . . , xm, y1, . . . , yn, as its leaves. Moreover, since y has no incoming
edge in Gr2 , we have R(x1, z) ∈ ϕ1 ∧ (ϕ2|x1

y ) if and only if R(x1, z) ∈ ϕ1 (for
every variable z). The claim follows. ut

Lemma A.3. Let D be a linear, acyclic ELU-program and let n be the maximal
transfer depth of a unary predicate in D. Then each rule in CloR(D) has depth
at most n.



Proof. Let r = A(x)∧ϕ→
∨n
i=1Bi(xi) ∈ CloR(D) By Lemma A.2, it suffices to

show that, for every i ∈ [1, n], the length of the (unique) path from x to xi in
Gr is equal to the difference between the transfer depth of A and the transfer
depth of Bi. This follows by a straightforward induction on the derivation of r
from D. ut

Definition A.4 (n-Simulation). Let r = A(x0)∧ϕ→ ψ be a tree-shaped rule.
We define an inductive family of preorders (�nr )n∈N between variables in r as
follows:

x �0
r y :⇔ {B | B(x) ∈ ψ } ⊆ {B | B(y) ∈ ψ }

x �n+1
r y :⇔ x �0

r y and for every R and x′ such that R(x′, x) ∈ ϕ
there is some y′ such that R(y′, y) ∈ ϕ and x′ �nr y′

We say x is n-simulated by y in r if x �nr y. We define [x]nr := { y | x �nr
y and y �nr x }.

Lemma A.5. Let r be a tree-shaped rule of depth m and let x, y, z be variables
such that, for some R, R(x, z), R(y, z) ∈ r and x �nr y for some n ≥ m. There
is a substitution σ such that xσ = y, rσ is tree-shaped, and rσ ⊆ r.

Proof. The claim follows if we can show that for every tree-shaped rule r of
depth m and every pair x, y such that x �mr y, there is a substitution σ such
that xσ = y and for every pair u, v of variables in the subtree of Gr rooted at x
we have:

1. uσ, vσ are variables in the subtree of Gr rooted at y.
2. For every variable u not in the subtree of Gr rooted at x: uσ = u.
3. For every unary predicate B: if B(u) ∈ r, then B(u)σ ∈ r.
4. For every binary predicate R′: if R′(u, v) ∈ r, then R′(u, v)σ ∈ r.

We prove the claim by induction on m. If m = 0, x and y have no successors
in Gr. Therefore, it suffices to show (1-3). Let σ map x to y and every other
variable in r to itself. Thus, (1) and (2) are trivial. For (3), observe that, since
x �0

r y, we have B(x)σ = B(y) ∈ r whenever B(x) ∈ r.
Now suppose m > 0. Let R1, . . . , Rn, x1, . . . , xn be all the predicate symbols

and variables such that Ri(xi, x) ∈ r (i ∈ [1, n]). Since x �mr y, there are
y1, . . . , yn such that Ri(yi, y) ∈ r and x �m−1

r y. By the inductive hypothesis,
there are substitutions σ1, . . . , σn such that, for every i ∈ [1, n]: xiσi = yi and
σi satisfies (1-4) for the subtree of Gr rooted at xi. Let σ be defined such that:

– xσ = y.
– For every i ∈ [1, n] and every variable u in the subtree of xi: uσ = uσi.
– For every other variable u: uσ = u.

Note that σ is well-defined since the subtrees rooted at x1, . . . , xn are pairwise
disjoint and do not contain x (which, in turn, holds since r is tree-shaped).
Clearly, σ satisfies (1) and (2). For the subtrees of Gr rooted at x1, . . . , xn, (3)
and (4) hold since σ extends σ1, . . . , σn. For x, (3) holds since x �0

r y, and (4)
follows since we have Ri(x, xi)σ = Ri(y, yi) for every i ∈ [1, n]. ut



Proposition A.6. Let D be a monadic disjunctive program and let f : N→ N
be a function defined as follows:

f(0) := 2|Σc(D)|

f(n+ 1) := 2|Σc(D)| · |Σr(D)| · 2f(n)

Then [x]nr ≤ f(n) for every rule r over Σ(D) and every variable x in r.

A rule r is condensed if r has no condensation that is smaller than r. By
Proposition A.6 and Lemma A.5 we obtain:

Lemma A.7. Let D be an ELU-program. The size of condensed tree-shaped
rules of depth n over Σ(D) is bounded in n and |Σ(D)|.

Proof. Let D be an ELU-program and let f be defined as in Proposition A.6.
It suffices to show that the number of variables in every condensed tree-shaped
rule of depth n is bounded by n · (|Σr(D)| · f(n))n.

Note that every tree T of depth n contains at most n ·mn nodes, where m
is the maximal outdegree of a node in T . Therefore, every tree of depth n that
has k nodes must contain a node that has outdegree at least n

√
k/n.

Suppose, for contradiction, r is a condensed tree-shaped rule of depth n that
mentions more than n · (|Σr(D)| ·f(n))n variables. By the above observation, Gr
must have a node z that has outdegree greater |Σr(D)| · f(n). Consequently, by
Proposition A.6, there is some predicate R and two distinct variables x, y such
that R(x, z), R(y, z) ∈ r and [x]nr = [y]nr . By Lemma A.5, there is a substitution
σ such that xσ = y and rσ ⊆ r. Since x and y are distinct, it follows that rσ ( r,
contradicting the assumption that r is condensed. ut

Lemma A.8. Every condensation of a tree-shaped rule is tree-shaped.

Proof. Let r be a tree-shaped rule and rσ a condensation of r. Since rσ is a
subclause of r, Grσ must be a forest, the root of Gr must be a source in Grσ,
and all leaves of Gr must be sinks in Grσ. Since rσ is a substitution instance of r
and Gr is connected, so must be Grσ. Hence, Grσ is a tree. The claim follows. ut

Lemma A.9. Unrestricted binary resolution with condensation terminates on
linear, acyclic ELU-programs. Moreover, the size of every rule derivable by binary
resolution with condensation from an acyclic ELU-program D is bounded in the
size of D.

Proof. Let D be a linear, acyclic ELU-program. By Lemma A.2, Lemma A.5, and
Lemma A.8, every rule derivable by resolution with condensation is tree-shaped.
By Lemma A.3 and Lemma A.7, the size and hence the number of condensed
tree-shaped rules is bounded in |Σ(D)|. The claims follow. ut

Lemma A.10 ([8] Theorem 12, Lemma 19). Let D be a disjunctive pro-
gram, let A be an ABox, and let C be a Horn clause such that D ∪ A |= C.
Let DiH be the Datalog program computed by Procedure 1 after i iterations of the
main loop. Then there is some n such that DnH ∪ A |= C.



Theorem A.11. Let D be a linear, acyclic ELU-program. Procedure 1 termi-
nates on D and returns a Datalog rewriting of D.

Proof. To show termination of Procedure 1, it suffices to bound the size of
every rule derived from D by resolution with condensation and factoring. By
Lemma A.9, the size of every rule derived from D by resolution with conden-
sation but no factoring is bounded in |Σ(D)|. Thus, it suffices to show that for
every rule r obtained from D by resolution with condensation and factoring there
is a (not necessarily strictly) larger rule r′ obtained from D by resolution with
condensation but without factoring such that r is subsumed by r′ (where clauses
are viewed as sets of atoms). This follows by a straightforward induction on the
derivation of r.

By Lemma A.10, the output of Procedure 1 is a Datalog rewriting of D. ut

Let D be a linear, acyclic ELU-program and let r = A(x) ∧ ϕ→
∨n
i=1Bi(xi) ∈

CloR(D). The proof of Lemma A.3 exhibits that the length of the path from x
to xi in Gr is equal to the difference between the transfer depth of A and the
transfer depth of Bi. In particular, if Bi = Bj for some 1 ≤ i < j ≤ n, then
xi and j must have the same distance from x in Gr. Thus, while factoring can
destroy the tree structure of Gr, it does not change the distance between x and
xi in Gr. The same is true for condensation. Thus, we have:

Proposition A.12. Let D be a linear, acyclic ELU-program, let P be a Datalog
rewriting of D computed by Procedure 1, and let r = A(x)∧ϕ→

∨n
i=1Bi(xi) ∈

P. Then for every i ∈ [1, n], the distance between x and xi in Gr is equal to the
difference between the transfer depth of A and the transfer depth of Bi.

Thus, given an ELU-program D, its Datalog rewriting P, and a rule r ∈ P, the
depth of Gr is still bounded by the maximal transfer depth of a predicate in D
and cannot be further increased by resolution.

Theorem 4.4. Given an acyclic ELU-program D and a unary predicate A in D,
Procedure 2 terminates and returns a UCQ rewriting of A(x) w.r.t. D.

Proof. By Theorem A.11, the call to Procedure 1 (Compile-Horn) terminates
and returns a Datalog rewriting of D. It is easily seen that the main loop of
the procedure computes the A-expansions of D as defined in [7] (similarly to
the algorithm in [14]). Therefore, the procedure terminates and returns a UCQ-
rewriting of A(x) w.r.t. D provided the resolution strategy implemented in the
main loop terminates.

Suppose, for contradiction, this is not the case. Then for every n ∈ N, P ′′
must eventually contain a rule r such that Gr contains more than n nodes and
r is not subsumed by any clause previously added to P ′′. By Proposition A.12,
the depth of every rule in CloR(P ∪ {A(x)→ Q(x)}) is bounded in D. So, let d
be the corresponding bound. It follows that Gr must contain a variable x with
outdegree at least d

√
n/d. For large enough n, this means there is a rule r ∈ P

and rules r1 = B(y)∧ϕ1 → Q(x), r2 = B(y)∧ϕ2 → Q(x) ∈ P ′, r′1, r′2 such that
r′1 is a resolvent of r with r1, r2 is derived from r′1 (and hence ϕ1 ⊆ ϕ2), and



r′2 is a resolvent of r with r2. It is easily seen that r′1 subsumes r′2. Moreover,
since r′2 is derived from r′1, r′1 is added to P ′′ before r′2, in contradiction to our
assumption. ut

B Proofs for Section 4.2 (Datalog Rewritability)

Given a separable ELU-program D, we write D∨ for the fragment of D as used
in Definition 4.6 and D∨̄ for D \ D∨.

Lemma 4.12. Let D be a linear ELU-program that is separable. Then, Proce-
dure 1 terminates on D∨ ∪Ω(D).

Proof. The claim holds since D∨ ∪Ω(D) is acyclic, which is the case since D∨ is
acyclic and every rule added by Ω(D) leads to a sink. ut

For the proof of Lemma 4.13, we need to generalise the notion of annotations
from how they are defined in §4.2. Let x, y, z be finite sequences of variables.
Annotations are now triples of the form (x, S,y), where S is a set of binary
atoms whose free variables are contained in x,y, z. Let α = (x, S,y) be an
annotation and let A = A1, . . . , A|x|, and B = B1, . . . , B|y| be finite sequences
of unary predicates. We define the following notation for disjunctive rules:

AαB := ∀xyz.

 |x|∧
i=1

Ai(xi)

 ∧( ∧
C∈S

C

)
→
|y|∨
j=1

Bj(yj)

For linear rules, the notation reduces to AαB, while for Datalog rules, we have
AαB, where A,B are single predicate symbols. If AαB is an ELU-rule, α must
be of the form (x, {R(y, x)}, y) or (x, ∅, x . . . x︸ ︷︷ ︸

n

) for some n ≥ 1.

Let α = (x, S,y), β = (x′, S′,y′) be annotations such that FV(α)∩FV(β) =
∅, and let i ∈ [1, |y|], j ∈ [1, |x′|]. We define:

α ◦ij β := (xx′1 . . . x
′
j−1x

′
j+1 . . . x

′
|x′|, S ∪ (S′|yix′j ), y1 . . . yi−1yi+1 . . . y|y|(y

′|yix′j ))

We call α◦ijβ the composition of α at position i to β at position j. We abbreviate

α ◦1j β as α ◦j β, α ◦i1 β as α ◦i β, and α ◦11 β as α ◦ β.

Proposition B.1. Let α = (xα, Sα,yα), β = (xβ , Sβ ,yβ), γ = (xγ , Sγ ,yγ) be
annotations and let i, i′ ∈ [1, |yα|], j ∈ [1, |xβ |], k ∈ [1, |yβ |], l ∈ [1, |xγ |]. Then:

1. α ◦ij (β ◦kl γ) = (α ◦ij β) ◦k+|yα|−1
l γ.

2. If i < i′, then (α ◦ij β) ◦i
′−1
l γ ≡a (α ◦i′l γ) ◦ij β.

Let r = AαB, r′ = A′α′B′ be two rules such that Bi = A′j and FV(α) ∩
FV(β) = ∅. We write r +i

j r
′ for the resolvent of r and r′ on Bi(yi) and A′j(x

′
j),

respectively. We abbreviate r +1
j r
′ as r +j r

′, r +i
1 r
′ as r +i r′, and r +1

1 r
′ as

r + r′. Resolution naturally corresponds to composition of annotations:



Proposition B.2. Let r = AαB, r′ = A′α′B′ be linear rules such that Bi = A′

and FV(α) ∩ FV(α′) = ∅. Then:

1. r +i r′ = A(α ◦i α′)B1 . . . Bi−1Bi+1 . . . B|B|B
′.

2. If r is Datalog, then r + r′ = A(α ◦ α′)B′.

We consider two rules r, r′ to be the same (and write r = r′) if they are
identical up to renaming of bound variables and reordering of literals. The cor-
responding equivalence on annotations can be defined as the least equivalence
relation ≡a such that:

1. (x1 . . . xm, S, y1 . . . yn) ≡a (x1 . . . xi−1xjxi+1 . . . xj−1xixj+1 . . . xm, S,
y1 . . . yk−1ylyk+1 . . . yl−1ykyl+1 . . . yn)

for all 1 ≤ i ≤ j ≤ m and 1 ≤ k ≤ l ≤ n,
2. (x, S,y) ≡a (x|uv , S|uv ,y|uv ) for every u /∈ x ∪ y ∪ FV(S).

Proposition B.3. Two rules of the form AαB, AβB are identical up to re-
naming of bound variables and reordering of literals if and only if α ≡a β.

We assume ◦ij and +i
j to be left-associative, writing r1 +i1

j1
r2 +i2

j2
r3 for

(r1 +i1
j1
r2) +i2

j2
r3 and α1 ◦i1j1 α2 ◦i2j2 α3 for (α1 ◦i1j1 α2) ◦i2j2 α3. As corollaries of

Proposition B.1, we obtain:

Corollary B.4. Let r = AαB, r′, r′′ be linear rules and i, j indices such that
r +i (r′ +j r′′) is a resolvent of r, r′ and r′′. Then:

1. r +i (r′ +j r′′) = r +i r′ +j+|B|−1 r′′.
2. If r is Datalog, then r + (r′ +j r′′) = r + r′ +j r′′.

Corollary B.5. Let r = AαB, r′, r′′ be linear rules and i, j indices such that
i < j and r +j r′′ +i r′ is a resolvent of r, r′, and r′′. Then r +i r′ +j−1 r′′ =
r +j r′′ +i r′.

Lemma B.6. Let D be a separable ELU-program, let P be a Datalog program
such that Σ(P) ∩ Σc(D) = ∅ and no rule in P resolves with a rule in D∨, and
let r ∈ CloR(D∪P) be linear. Then either r ∈ CloR(D∨̄∪P) or, for some n ≥ 0,
we have r = r∨ + r1 + . . .+ rn where:

– r∨ = AαB ∈ CloR(D∨) where |B| ≥ n.
– {r1, . . . , rn} ⊆ CloR(D∨̄ ∪ P).

Proof. Let r ∈ CloR(D ∪P) \ CloR(D∨̄ ∪ P) we show that r can be decomposed
as claimed by induction on the derivation of r ∈ CloR(D ∪ P). If r ∈ D, the
claim is true for n = 0. Otherwise, let r = r′ +i

j r
′′. Since r /∈ CloR(D∨̄ ∪ P), we

have {r′, r′′} 6⊆ CloR(D∨̄ ∪ P). Therefore, since no rule in P resolves with D∨
and no unary predicate in D∨̄ occurs in the body of a rule in D∨, we must have
r′ ∈ CloR(D ∪ P) \ CloR(D∨̄ ∪ P). Hence, by the inductive hypothesis, we have
r′ = r′∨ + r′1 + . . . + r′m where r′∨ = A′α′B′ ∈ CloR(D∨) and {r′1, . . . , r′m} ⊆
CloR(D∨̄ ∪ P). Since r is linear and Σ(P) ∩Σ(D∨) = ∅, r′′ must be linear, and
hence j = 1. We distinguish two cases:



1. r′′ ∈ CloR(D∨̄∪P). Then either i ∈ [m+1, n] or i ∈ [1,m]. In the former case,
the claim is immediate. In the latter case, the claim follows by Corollary B.4.

2. r′′ ∈ CloR(D ∪ P) \ CloR(D∨̄ ∪ P). Then r′′ = r′′∨ + r′′1 + . . . + r′′k where
r′′∨ = A′′α′′B′′ ∈ CloR(D∨) and {r′′1 , . . . , r′′k} ⊆ CloR(D∨̄ ∪ P). Moreover,
n = m + k an |B| = |B′| + |B′′|. Since no unary predicate in D∨̄ occurs in
the body of a rule in D∨, we have i ∈ [m+ 1, n]. W.l.o.g., let i = 1 (we can
always achieve this by reordering the literals in r′′). Then

r = r′∨ + r′1 + . . .+ r′m + (r′′∨ + r′′1 + . . .+ r′′k)

= r′∨ + r′1 + . . .+ r′m + r′′∨ +|B
′| r′′1 +|B

′| . . .+|B
′| r′′k

= (r′∨ +m+1 r′′∨) + r′1 + . . .+ r′m +|B
′| r′′1 +|B

′| . . .+|B
′| r′′k

by Corollary B.4 and Corollary B.5. Therefore, we have r = r∨ + r′1 + . . .+
r′m + r′′1 + . . .+ r′′k where r∨ is obtained from r′∨+m+1 r′′∨ by moving the last
|B′′| literals right after the first m literals. ut

As shown in §4.2, every linear EL-program P can be seen as a labeled
transition system (i.e., automaton without initial and final states). Every rule
AαB ∈ P is seen as a transition from A to B labeled with α. This view yields
a natural notion of a path between two unary predicates in P as a sequence of
“connected” rules.

Proposition B.7. Let P be a linear EL-program and let r be a rule. Then
r ∈ CloR(P) iff there is a path r1, . . . , rn (n ≥ 1) in P such that r = r1+ . . .+rn.

Corollary B.8. Let P be a linear EL-program and let r = AαB be a rule
where A 6= B. Then r ∈ CloR(P) if and only if there is a word α1 . . . αn ∈
L(AutP(A,B)) such that α = α1 ◦ . . . ◦ αn.

Given an annotation α = (u, S, v) and variables x, y /∈ FV(S), we write
α(x, y) for the formula

∧
C∈S(C|xyuv). If S is empty, the notation is only defined

if x = y and stands for >(x).
With this, we can generalise the definition of the Datalog program Pe for a

regular expression e over annotations (see §4.2) as follows:

P∅ = ∅
Pα = {α(x, y)→ Nα(x, y)}

Pe1e2 = Pe1 ∪ Pe2 ∪ {Ne1(x, y) ∧Ne2(y, z)→ Ne1e2(x, z)}
Pe1+e2 = Pe1 ∪ Pe2 ∪ {Ne1(x, y)→ Ne1+e2(x, y), Ne2(x, y)→ Ne1+e2(x, y)}
Pe∗ = Pe ∪ {>(x)→ Ne∗(x, x), Ne(x, y) ∧Ne∗(y, z)→ Ne∗(x, z)}

Proposition B.9. Let P be a linear EL-program, let e be a regular expression
over annotations in P, and let L(e) be the language represented by e. Then for
every sequence α1, . . . , αn (n ≥ 1) of annotations in P:

α1 . . . αn ∈ L(e) iff (α1 ◦ . . . ◦ αn)(x, y)→ Ne(x, y) ∈ CloR(Pe)



Proposition B.10. Let P be a linear EL-program and let e1, . . . , en be regular
expressions over rule annotations in P. Then Pe1 ∪ · · · ∪ Pen is a conservative
extension of Pe1 in the sense that for every conjunction of atoms ϕ:

ϕ→ Ne1(x, y) ∈ CloR(Pe1) iff ϕ→ Ne1(x, y) ∈ CloR(Pe1 ∪ · · · ∪ Pen)

Given a disjunctive programD, we write CloSR(D), CloSF (D), and CloSRF (D) for
the set of all rules subsumed in CloR(D), CloF (D), and CloRF (D), respectively.

Lemma B.11. Let D be an ELU-program such that CloR(D) = D and let R be
a Datalog program such that Σc(D) ∩Σ(R) = ∅. Then:

CloSR(D ∪R) = CloSR(R) ∪
{
ψ ∧ ϕ→ χ

∣∣∣∣ ψ ∧ ϕ′ → χ is subsumed in D,
ϕ→ ϕ′ ∈ CloSR(R)

}
where ψ denotes conjunctions of unary atoms, χ denotes disjunctions of unary
atoms, and ϕ,ϕ′ denote conjunctions of binary atoms.

Proof. The inclusion from left to right is immediate. For the other inclusion,
suppose r = ψ ∧ ϕ → χ ∈ CloR(D ∪ R) \ CloR(R). We show the existence of a
rule ψ∧ϕ′ → χ ∈ D such that ϕ→ ϕ′ ∈ CloSR(R) by induction on the derivation
of r ∈ CloR(D ∪ R). If r ∈ D, the claim is immediate, so suppose r is obtained
by resolution from r1, r2 ∈ CloR(D∪R). Since r /∈ CloR(R), {r1, r2} 6⊆ CloR(R).
We prove the claim for {r1, r2} ∩ CloR(R) = ∅ (the other case is similar but
simpler). Let r1 = ψ1 ∧ ϕ1 → χ1 and r2 = ψ2 ∧ ϕ2 → χ2. Since r is a resolvent
of r1 and r2, we have ϕ = ϕ1 ∧ ϕ2. By the inductive hypothesis, there are rules
r′1 = ψ1 ∧ ϕ′1 → χ1 and r′2 = ψ2 ∧ ϕ′2 → χ2 such that ϕ1 → ϕ′1 ∈ CloSR(R)
and ϕ2 → ϕ′2 ∈ CloSR(R). Then r′ = ψ ∧ ϕ′1 ∧ ϕ′2 → χ is a resolvent of r′1 and
r′2 and hence r′ is subsumed by a clause in D. Since ϕ1 → ϕ′1 ∈ CloSR(R) and
ϕ2 → ϕ′2 ∈ CloSR(R), we have ϕ1 ∧ ϕ2 → ϕ′1 ∧ ϕ′2 ∈ CloSR(R). The claim follows.

ut

Similarly, we have:

Lemma B.12. Let D be an ELU-program such that CloRF (D) = D and let R
be a Datalog program such that Σc(D) ∩Σ(R) = ∅. Then:

CloSRF (D ∪R) = CloSR(R) ∪
{
ψ ∧ ϕ→ χ

∣∣∣∣ ψ ∧ ϕ′ → χ is subsumed in D,
ϕ→ ϕ′ ∈ CloSR(R)

}
Proof. Proceeds analogously to the proof of Lemma B.11 with the additional
observation that CloR(R) = CloRF (R) since R is a Datalog program. ut

Given a disjunctive program D, we write DH for the set of all Datalog (or Horn)
rules in D.

Lemma B.13. Let D be an ELU-program, let R be a Datalog program such
that Σc(D) ∩Σ(R) = ∅, and let r be a Datalog rule. Then:

r ∈ CloSRF (D ∪R) iff r ∈ CloSR(CloRF (D)H ∪R)



Proof. The direction from left to right holds since CloR(CloRF (D)H ∪ R) ⊆
CloRF (D ∪ R). For the other direction, suppose r ∈ CloRF (D ∪ R). Clearly,
CloRF (D∪R) ⊆ CloRF (CloRF (D)∪R). Therefore, by Lemma B.12, r ∈ CloSR(R)∪
{ψ ∧ ϕ → χ | ψ ∧ ϕ′ → χ ∈ CloSRF (D), ϕ → ϕ′ ∈ CloSR(R) }. On the other
hand, since CloRF (CloRF (D)H) = CloRF (D)H , we have CloSR(CloRF (D)H ∪R) =
CloSR(R) ∪ {ψ ∧ ϕ → χ | ψ ∧ ϕ′ → χ ∈ CloSRF (D)H , ϕ → ϕ′ ∈ CloSR(R) }. The
claim follows since r is Datalog. ut

Lemma B.14. Let P be a linear EL-program, let r = AαB be a rule where
A 6= B, and let A ∈ S ⊆ Σc(P). Then:

r ∈ CloSR(P) iff r ∈ CloSR({A(x) ∧Ne〈A,B〉(x, y)→ B(y)} ∪ Pe〈A,B〉)

Proof. Let r′ = A(x)∧Ne〈A,B〉(x, y)→ B(y). For the direction from left to right,
suppose r ∈ CloR(P). By Corollary B.8 and Proposition B.9, r′′ = α(x, y) →
Ne〈A,B〉(x, y) ∈ CloR(Pe〈A,B〉). The claim follows since r is a resolvent of r′ and r′′.

For the direction from right to left, suppose r ∈ CloR({r′} ∪ Pe〈A,B〉). Since
CloRF ({r′}) = {r′} and Σ(Pe〈A,B〉) ∩ {A,B} = ∅, we have r ∈ {A(x) ∧ ϕ →
B(y) | ϕ → Ne〈A,B〉(x, y) ∈ CloSR(Pe〈A,B〉) } (by Lemma B.12), and thus r′′ ∈
CloSR(Pe〈A,B〉). The claim follows by Proposition B.9 and Corollary B.8 (it is
easily seen that the equivalence AαB ∈ CloR(P) ⇔ r′′ ∈ CloR(Pe〈A,B〉) implies

AαB ∈ CloSR(P) ⇔ r′′ ∈ CloSR(Pe〈A,B〉)). ut

Proposition B.15. Let r1, r2 be tree-shaped rules, r′1 a positive factor of r1,
and r′3 a resolvent of r′1 and r2. Then there is a rule r3 such that:

1. r3 can be obtained by resolution from r1 and r2 in at most two steps.
2. r′3 is equivalent, up to mutual subsumption, to a positive factor of r3.

Lemma B.16. For every linear ELU-program D: CloSRF (D) = CloSF (CloR(D)).

Proof. Clearly, CloF (CloR(D)) ⊆ CloRF (D). The other inclusion follows with
Proposition B.15 by induction on the derivation of r ∈ CloRF (D). ut

Lemma B.17. Let D be a linear ELU-program and let R be a Datalog program
such that Σc(D) ∩Σ(R) = ∅. Then CloSRF (D ∪R) = CloSF (CloR(D ∪R)).

Proof. Clearly, CloF (CloR(D∪R)) ⊆ CloRF (D∪R). So, let r ∈ CloRF (D∪R) =
CloRF (CloRF (D)∪R) ⊆ CloSR(R)∪ {ψ ∧ ϕ→ χ | ψ ∧ ϕ′ → χ ∈ CloSRF (D), ϕ→
ϕ′ ∈ CloSR(R) } (by Lemma B.12). By Lemma B.16, r ∈ CloSR(R) ∪ {ψ ∧ ϕ →
χ | ψ ∧ ϕ′ → χ ∈ CloSF (CloR(D)), ϕ → ϕ′ ∈ CloSR(R) } = CloSF (CloR(R) ∪
{ψ ∧ ϕ → χ | ψ ∧ ϕ′ → χ ∈ CloR(D), ϕ → ϕ′ ∈ CloR(R) }). The claim,
r ∈ CloSF (CloR(D ∪R)), follows by Lemma B.11. ut

Lemma B.18. Let D be a separable ELU-program. Let, for every A ∈ Σc(D),
QA be the predicate introduced for A in Ω(D). Let D′ = D∪

⋃
A′∈Σc(D){A′(x)→

QA′(x)} and let r = AαQB be a rule where A,B ∈ Σc(D). Then:

r ∈ CloSRF (D′) iff r ∈ CloSR(CloRF (D∨ ∪Ω(D))H ∪Ξ(D))



Proof. Suppose r ∈ CloRF (D′). By Lemma B.16, there is some r′ ∈ CloR(D′)
such that r ∈ CloSF ({r′}). By Lemma B.6, either r′ ∈ CloR(D′∨̄) or r′ = r∨ +
r1 + . . .+ rn where r∨ ∈ CloR(D′∨) and r = AaαiQB ∈ CloR(D′∨̄) (i ∈ [1, n]). We
show the claim for the second case as the first case is similar but simpler. By
Lemma B.14, we have ri ∈ CloSR({Ai(x)∧Ne〈Ai,QB〉(x, y)→ B(y)}∪Pe〈Ai,QB〉) ⊆
CloSR(D∨∪Ω(D)∪Ξ(D)) (i ∈ [1, n]). Therefore, r′ ∈ CloSR(D∨∪Ω(D)∪Ξ(D)) and,
consequently, r ∈ CloSRF (D∨∪Ω(D)∪Ξ(D)). The claim follows by Lemma B.13.

Now suppose r ∈ CloR(CloRF (D∨ ∪ Ω(D))H ∪ Ξ(D)). By Lemma B.13, we
then have r ∈ CloSRF (D∨ ∪ Ω(D) ∪ Ξ(D)). By Lemma B.17, there is some r′ ∈
CloR(D∨ ∪ Ω(D) ∪ Ξ(D)) such that r ∈ CloSF ({r′}). By Lemma B.6, either
r′ ∈ CloR(Ω(D)∪Ξ(D)) or r′ = r∨+ r1 + . . .+ rn such that r∨ ∈ CloR(D∨) and
{r1, . . . , rn} ⊆ CloR(Ω(D) ∪Ξ(D)).

Let P ′ =
⋃
A′∈Σc(D){A′(x) → QA′(x)}. It suffices to show that for every

i ∈ [1, n]: ri ∈ CloSR(D∨̄ ∪ P ′) (since then r ∈ CloSF (CloSR(D∨ ∪ D∨̄ ∪ P ′)) =
CloSRF (D′)). So, let i ∈ [1, n] and let ri = AiαiQB . By definition, no two rules
in Ω(D) resolve with each other. Moreover, the rules in Ω(D) have pairwise
distinct unary predicates in their bodies. Therefore, with Lemma B.11, we obtain
ri ∈ CloSR({Ai(x) ∧ Ne〈Ai,QB〉(x, y) → QB(y)} ∪ Ξ(D)). The claim follows by
Lemma B.14 and Proposition B.10. ut

Proposition B.19. Let F be a set of FO-sentences and let r be a Datalog rule
of the form ϕ → H. Then F |= r if and only if for every substitution σ from
the variables in r to individuals: F ∪ {ϕσ} |= Hσ.

Lemma B.20. Let D be an ELU-program, let P be an EL-program, and let
Q be a unary predicate such that Σ(D) ⊆ Σ(P) and for every Datalog rule
r = ϕ→ Q(x) over Σ(D):

r ∈ CloSRF (D) iff r ∈ CloSR(P)

Then for every ABox A over Σ(D) and every individual a:

D ∪A |= Q(a) iff P ∪ A |= Q(a)

Proof. Suppose D∪A |= Q(a). Let θ be a substitution mapping each individual
in A to a distinct variable and let r = (

∧
A)θ → Q(aθ). By Proposition B.19,

we then have D |= r. Then, by completeness of binary resolution with positive
factoring, r ∈ CloSRF (D), and hence r ∈ CloSR(P) by the assumption. Since binary
resolution with factoring is a sound inference calculus, we have P |= r, and hence
D ∪ A |= Q(a) by Proposition B.19 (as the inverse of θ is a substitution from
variables in r to individuals).

The other direction follows analogously since binary resolution without fac-
toring is a sound and complete inference calculus for Horn clauses. ut

Lemma 4.13. Let D be a separable ELU-program. Let P be the union of Ξ(D)
and the output of Procedure 1 on D∨ ∪ Ω(D). Then, for every query A(x) and
every ABox A, we have cert(A(x),D,A) = cert(QA(x),P,A).



Proof. Let D′ = D ∪
⋃
A∈Σc(D){A(x) → QA(x)} where QA is the predicate

introduced in Ω(D) for A. Clearly, we have D ∪ A |= A(a) iff D′ ∪ A |= QA(a)
for every query A(x), individual a, and ABox A over Σ(D). Hence, it suffices
to show that for every A(x), a, A: D′ ∪ A |= QA(a) iff P ∪ A |= QA(a). By
Lemma B.20, this is the case if CloSRF (D′) = CloSR(P) restricted to Datalog rules
over Σ(D′) of the form ϕ → QA(x) (for every A(x)). The equation holds by
Lemma B.18 as every Datalog rule over Σ(D′) in CloSRF (D′)∪CloSR(P) is linear,
and CloRF (D∨ ∪ Ω(D))H is equal to the output of Procedure 1 on D∨ ∪ Ω(D)
up to subsumption. ut

Theorem 4.14. On input a separable ELU-program D, Procedure 3 returns a
Datalog rewriting of D.

Proof. Let P be set computed in Line (9) of Procedure 3 on input D and let
P ′ be the output of the procedure. By Lemma 4.13, it suffices to show that
cert(QA(x),P,A) = cert(A(x),P ′,A) for every ABox A and every unary predi-
cate A in D. So, let A and A be as required.

Clearly, cert(QA(x),P,A) ⊆ cert(A(x),P ′,A). For the other inclusion, ob-
serve that, by Lemma 4.13, D ∪ A |= A(a) whenever P ∪ A |= QA(a). So,
replacing QA by A in P does not allow to derive anything that is not entailed
by the original program. ut


