
Constructive DL update and reasoning for
modeling and executing the orchestration of

heterogeneous processes ?

Serge Autexier and Dieter Hutter

German Research Center for Artificial Intelligence (DFKI), Bremen, Germany
{serge.autexier|dieter.hutter}@dfki.de

Abstract. Our digital world is characterized by various concurrent pro-
cesses that interact with the physical world. Each of them follows its own
rules and goals and only few of them are under a central control. While
usually a human mediates between these processes, we developed the
SHIP-tool to orchestrate these processes automatically. It uses Descrip-
tion Logic to represent a current state, which is constantly updated by
messages sent by sensors and other processes. Temporal-logical formulas
act as monitors that supervise the evolution of the system. The failure or
success of monitors can initiate procedures given as programs on actions
and specified in a Dynamic Logic. In this paper we describe in partic-
ular the aspect of storing and maintaining the state of the system in
Description Logic ontologies. We formulate restrictions on ABoxes and
their updates to always ensure a constructive specification of the current
state while keeping the general rules of the system (i.e the TBox and
RBOX) invariant.

1 Introduction

While independently developed computer systems obtain more and more the
ability to communicate with each other on a technical level, there is an upcoming
need to orchestrate and combine the processes performed by these systems on
an operational or work-flow level. In the past, typically humans were responsible
to supervise the processes and to translate and exchange important information
between them. The SHIP-Tool is an attempt to automate this task and is based
on an abstract (logic) symbolic representation of an actual situation, the ways the
processes can change a situation, and the expectations of future developments
in a situation.

It provides an implementation, execution and simulation platform for work-
flow processes allowing the user to integrate and monitor existing devices, ser-
vices or even entire systems. This is achieved by providing a logical formalism to
describe the real world in an abstract way. Changes in the real world are com-
municated to the tool in terms of updates changing its abstract representation.

? This work is supported by the German Federal Ministry of Education and Research
(BMBF) under grant 01 IW 10002 (SHIP)

2 Serge Autexier and Dieter Hutter

Vice versa, the tool can initiate changes in the real world by executing actions
or processes.

Complex behaviors can be defined guided by changes in the abstract world.
The behavior of the world is monitored. Process descriptions can be provided to
react on successful or failed developments of the world. This enables us, for in-
stance, to monitor the behavior of a black-box device or some users and to react
to any non-expected behavior. At the other end of the spectrum it allows us to de-
fine complex activities and work-flows in terms of processes acting on existing de-
vices and services and communicating with the user.
The interweavement of process de-
scriptions with monitoring as well as
the interleaved execution of parallel
processes, both based on the same
world representation, provides a pow-
erful formalism to implement pro-
cesses to assist and monitor activities
in the environment in interaction with
users and based on existing services
and devices.

Using Description Logic to repre-
sent the environment allows for pro-
cesses being dynamic description logic
(DDL) programs [7] over environment
representations in description logic on-
tologies. Monitors can be invoked from
dynamic logic processes: if the behav-
ior is entirely observed, the monitor in-
vocation is successful (it may well never terminate if it is an invariant that always
holds, or expecting eventually a property to hold, but which never holds). If the
behavior is violated, the monitor invocation process fails and can be dealt with
on the dynamic logic level like any other failing process.

2 The Basic Concepts

Modeling the World. The SHIP-Tool uses description logic [9, 4] to represent
the knowledge of an application domain in an ontology. The syntax SHIP-DL
is an extension of standard DL to supports modularization and renaming and
syntactic sugar to ease the declaration of abstract datatypes.

Given a set NC of concept names, a set NR of role names and a set of NI

of individuals, concepts are defined inductively from NC and roles from NR. We
introduce the description logic SROIQ, which will be used for queries, but only
its SRIQ fragment will be used to define the ontology. For SROIQ, concepts are
formed using the constructors given in Table 1, where T and F are predefined
top and bottom atomic concepts, C and D are either concept names from NC or

Constructive DL update and reasoning 3

Name Syntax Semantics under interpretation I
Top T ∆I

Bottom F ∅
Atomic concept c ∈ NC cI

Intersection C u D CI ∩DI

Union C t D CI ∪DI

Negation ¬C ∆I\CI

Value Restriction ∀R.C {a ∈ ∆I |∀b.(a, b) ∈ R⇒ b ∈ CI}
Existential quant. ∃R.C {a ∈ ∆I |∃b.(a, b) ∈ R⇒ b ∈ CI}
Number Restriction = n R.C {a ∈ ∆I ||{b ∈ ∆I |(a, b) ∈ RI | = n}

≥ n R.C {a ∈ ∆I ||{b ∈ ∆I |(a, b) ∈ RI | ≥ n}
≤ n R.C {a ∈ ∆I ||{b ∈ ∆I |(a, b) ∈ RI | ≤ n}

Nominal concept {i1, . . . , in} {iI1 , . . . , iIn}

Table 1. SROIQ Syntax and Semantics

complex concept expressions formed accordingly, R is either a role name from
NR or the inverse of a role name R−1, and ij are individual names from NI .

The terminological part of an ontology consists of definitions and inclusion
axioms of concept and role names. Concept names c can be declared as sub-
concepts of concepts by concept inclusion axioms c v D or defined by concept
equality c = D. Disjointness of concepts is declared by Disjoint. A concept name
c directly depends on a concept name d if c is defined by c = D and d occurs in
D. A concept name c depends on a concept name d, if c directly depends on d

or there exists a concept name e which depends on d and c directly depends on
e. We denote the dependency relation between concept names by >c.

Roles are declared by indicating their domain and range. Similar to concepts,
subroles can be declared by limited complex role inclusion axioms r0.rn v r

where r ∈ NR and ’.’ denotes role composition. Furthermore, role names can be
defined as the composition of roles r = r0. . . . rn or as the reflexive, transitive
closure of another role r = r0*. This is not expressible in description logic and
it is translated to r0 v r, Trans(r), Ref(r) when translating to DL. However, it
is important as a meta-property to ensure that nothing else than the transitive
closure of r0 is in r when enforcing constructiveness of ontologies and it will be
used there. SHIP supports the standard role properties Sym, Asym, Trans, Ref,
Irref, Func, and FuncInv). A role name directly depends on a role name r′ if r
is defined by r = R and r′ occurs in R. A role name r depends on a role name r′,
if r directly depends on r′ or there exists a role name r′′ which depends on r′

and r directly depends on r′. We denote the dependency relation between role
names by >r.

For SHIP, a TBox consists of the concept inclusions, definitions and dis-
jointness assertions from Table 2 and those obtained to encode role declarations
r:C×D. An RBox consists of role inclusions and definitions as show in Table 2
and property assertions. Furthermore, we require the induced dependency rela-

4 Serge Autexier and Dieter Hutter

ϕ I |= ϕ if . . .

Concept inclusion c v C, c ∈ Nc, C in SRIQ cI ⊆ CI

Concept definition c = C, c ∈ Nc, C in SRIQ cI = CI

Concept disjointness Disjoint(c,d), c, d ∈ Nc cI ∩ dI = ∅
Role declaration r : C× D, r ∈ Nr, C,D in

SRIQ

RI ⊆ CI ×DI

Role inclusion r0.rn v r, r ∈ NR, n ≥ 1 r0
I ◦ · · · ◦ rnI ⊆ rI

Role definition r = r0 rn, r ∈ NR,

n ≥ 1
r0
I ◦ · · · ◦ rnI = rI where

RI ◦ R′I = {(x, z)|∃y.(x, y) ∈
RI , (y, z) ∈ R′I}.

r = r0*, r ∈ NR r0
I∗ ⊆ rI

Role properties Fun(r), Invfun(r), Ref(r),

Irref(r), Trans(r), Sym(r),

Asym(r), r ∈ Nr

as usual

Table 2. TBox- and RBox-assertions and their satisfiability in an interpretation I

tion on concept and role names to be irreflexive (i.e. we consider acyclic TBoxes
and RBoxes modulo the transitivity of roles). The TBox and RBox form the
terminological part of a SHIP-ontology.

In addition we use the following syntactic sugar to ease the definition of
ontologies in a style inspired by abstract datatypes:

– c ::= C1(r11 : D11, . . . , r1n1 : D1n1)|...|Cm(rm1 : Dm1, . . . , rmnm : Dmnm), c ∈ NC

is expanded to
• c = C1 t . . . t Cn and
• Disjoint(Ci, Cj) ∀i 6= j.
• Ci v (∃ri1.Di1) u . . . u (∃rini .Dini) ∀1 ≤ i ≤ m, and
• rij : Ci × Dij, Fun(rij) ∀1 ≤ i ≤ m, 1 ≤ j ≤ ni.

As an example consider the DL declarations defining Lists over elements Elem.

List ::= EmptyList | NonEmptyList(hd:Elem ,tl:List)

which is expanded to

List = EmptyList t NonEmptyList

Disjoint(EmptyList , NonEmptyList)

NonEmptyList v (∃hd . Elem) u (∃tl . List)

hd:NonEmptyList × Elem

Fun(hd)

tl:NonEmptyList × List

Fun(tl)

The ABox part consists of a list of concept assertions a:C, C in SRIQ, declaring
a to be a member of the concept C, and role assertions (a,b):R, stating that
relation R holds between the individuals a and b. For every SHIP-DL-ontology
we assume the unique name assumption. Complex ontologies can be composed by
importing and renaming existing ontologies. For instance from the List-ontology
before we build an ontology for Routes specifying routes along Positions by

Constructive DL update and reasoning 5

〈monitor〉 ::= ‘monitor’ 〈string〉 〈params〉 ‘=’ 〈foltl〉

〈foltl〉 ::= 〈aboxass〉 | ‘not’ 〈aboxass〉 | 〈string〉 〈params〉 | 〈foltl〉 ‘and’ 〈foltl〉
| 〈foltl〉 ‘or’ 〈foltl〉 | 〈foltl〉 ‘=>’ 〈foltl〉 | (‘all’ | ‘ex’) 〈aboxass〉 ‘.’ 〈foltl〉
| ‘(’ 〈foltl〉 ‘)’ | (‘X’|‘F’|‘G’) 〈foltl〉 | 〈foltl〉 ‘U’ 〈foltl〉

Fig. 1. SHIP-TL language to monitor ontology updates

import basic.Lists with

concepts Elem as Position , List as Route , EmptyList as

EmptyRoute , NonEmptyList as NonEmptyRoute

roles hd as route_next , tl as route_rest

individuals nil as emptyroute

where nil:EmptyList is declared in the List-ontology as an empty list.
Throughout the rest of the paper we will denote by O ` ϕ that ϕ is satisfied

by the ontology O, where ϕ can be a TBox, RBox or ABox-assertion.

Monitors. SHIP uses linear temporal logic (LTL) [11] to observe temporal prop-
erties about ontology updates. In practice, these properties are used to express
an expected behavior of the environment, or to detect specific situations over
time that require some actions. We call programs that monitor such properties
simply monitors. In SHIP, monitors can be started at any time and are evalu-
ated w.r.t. a finite set of ontology updates that occurred between the start of the
monitor up to the current time or its termination. Thereby, it does not matter
whether the update was performed by a SHIP-process or the environment.

When monitoring a property, different situations can arise: (i) the property is
satisfied after a finite number of steps – in this case, the monitor evaluates to true
and terminates successfully; or (ii) the property evaluates to false independently
of any continuation – in this case, the monitor terminates with failure; or (iii) the
behavior that was observed so far allows for different continuations that might
both lead to a failure as well as success – in this case, the monitor is still running.

The language is a first-order temporal logic over description logic ABox-
assertions and similar to that used in [2]. First-order quantification is over indi-
viduals, which are flexible constants from a logic point of view, and interpreted
over the current world. Hence, quantification is over the finite set of individuals
in the current ontology at the moment when the quantifiers are expanded. This
can be arbitrarily often as in F(all x . x:C) and not be determined beforehand.
We use the formulas as part of the process language and to reason about the
SHIP processes, though. Fig. 1 shows the grammar for monitors. The temporal
operators are X indicating the next world, F indicating some point in the future,
G stating that a property must hold globally, and U stating that a property must
hold until another property becomes true. As ABox-assertions in the monitor
language we allow for concept assertions a : C, where C is from the full SROIQ
and not only from SRIQ as in the ABox.

As an example for a monitor formula we consider a use case where different
autonomous wheelchairs operate in a building in which they can ride along routes

6 Serge Autexier and Dieter Hutter

consisting of positions. The SHIP-Tool has been used to add a control layer on
top of the wheelchairs to avoid conflicting situations by scheduling the routes
of the wheelchairs. One simple behavior one wants to monitor is when a new
schedule must be computed. The part of the ontology specifying Routes has
been introduced before. For the purpose of illustrating this monitor, we use the
following TBOX/RBOX-assertions:

IDObject ::= WheelChair(whc_route:Route , whc_carries:OptPerson)

| OptPerson

OptPerson = Person | Nobody

WCEmptyroute = WheelChair u ∃whc_route . EmptyRoute

WCNonEmptyroute = WheelChair u ∃whc_route . NonEmptyRoute

It defines WheelChairs to have a route and carrying a Person or Nobody. Subcon-
cepts are wheelchairs having an empty resp. a non-empty route. To know if a
new schedule must be computed, we must successfully observe the behavior:

(∃wc:WCEmptyroute.F(wc:WCNonEmptyroute)) or

(∃wc:WCNonEmptyroute.
F(wc:WCEmptyroute and F(wc:WCNonEmptyroute)))

This expresses that either in the current situation we have a wheelchair with an
empty route and that wheelchair eventually gets a non-empty route. Or there is
a wheelchair which currently has a non-empty route, eventually gets an empty
route and then again eventually a non-empty route. If one of these behaviors
is observed, then we must compute a new schedule. The actual monitoring is
performed by formula progression (see, e.g., [5]) after each update. Although
formula progression in principle has some disadvantages over the translation
into automata, we use formula progression as at each state of the progression
the expectations on the future are immediately available in a formula and can be
used for inspection, for instance to determine suitable next actions. Note that we
are at this stage not interested in proving properties about SHIP-processes, but
rather use it at run-time to observe behavior of the environment. Hence, even
trivially true formulas like X(X(X True)) is not superfluous, but a valid means to
observe four clock-steps.

Another example making use of the expressivity provided by SROIQ is when
some light l in an area of the flat should be on depending on the current day
time time, planned rides of the wheelchairs and where the occupants of the flat
currently are:

monitor LightShouldBeOn (time ,l) =

time:Night and l:AbstractOff and

∃area:(Area u (∃associated_light−1. { l })) .

(// 1. Either some wheelchair has a non -empty route , and ...

(∃wc:WCNonEmptyroute. (

// carries a person or there is a person in the area ...

(wc:WCCarriesPerson or ∃person :(Person u (∃elementIsInArea
. { area })) . true)

and // ... the wheelchair is already in or about to enter

((wc,area):elementIsInArea or (wc,area):wcnextarea)))

Constructive DL update and reasoning 7

Name Syntax Semantics

simple
condition

if a then b

else c

branches according to a or waits until a can be decided

complex switch branches according to the specified cases
condition case c1 => p which are checked in order. can be used

. . . as default case, then, the condition never
case ck => p stutters.

iteration p* applies p until it fails, always succeeds

sequence p ; q applies p then q

monitor
start

init m starts the monitor, continues when the monitor succeeds
or fails when the monitor fails

guarded
execution

p +> q executes p; if p fails, q is executed, but the modifications
of p are kept

parallel p || q executes p and q in parallel (interleaved), terminates when
both p and q terminate, fails when one of them fails

bounded
parallel

forall c => p executes p for all instances matching c in parallel, termi-
nates when all terminate, fails when one of them fails
Table 3. Process combinators

or // the wheelchair is assigned to a person in the same area

(∃person :(Person u (∃elementIsInArea . { area })) .

∃wc:(WheelChair u (∃wcAssignedToPerson . { person })) .

(wc,area):elementIsInArea))

Actions and Processes. The SHIP processes are dynamic description logic pro-
cesses based on actions and similar to those in the literature (e.g, [7]). Actions
α(p) = 〈pre, eff〉 represent parametrized atomic interactions with the environ-
ment and consist of a finite set of ABox assertions pre, the preconditions, and
a set eff of conditional effects ϕ/ψ, where ϕ and ψ are ABox assertions. An
action is applicable on an ontology O if all its preconditions are satisfied in O,
i.e., O ` pre. In this case, O is updated to a new ontology O′ by applying all
conditional effects whose conditions also hold in O. If O′ is inconsistent, then
the action fails and we keep O as the current ontology. Otherwise the action suc-
ceeds and O′ is the new current ontology. If the preconditions are not satisfied,
the action stutters, i.e., waits until it gets applicable. skip is the action which is
always applicable and does not modify the ontology.

Using free variables in the effects, new individuals can be added to O, where
a fresh name is created at run-time. By annotating a variable with delete, indi-
viduals can also be removed from the ontology. This is necessary, for instance,
to remove individuals whose counterpart in the real world no longer exists.

SHIP provides a language to define complex processes that interact with the
environment. Starting from actions, complex system behaviors can be described
by combining other processes as well as by interacting with monitors. Starting
from atomic actions, more complex processes can be defined using the combina-
tors shown in Table 3.

8 Serge Autexier and Dieter Hutter

3 States and Their Updates

The states of a specified system are represented by ABoxes with respect to fixed
TBox and RBox and the transition of states corresponds to ABox-updates. Thus
ABox-updates do not change the underlying TBox/RBox semantics character-
izing the overall system states. Hence the approach to ABox-updates from [8] is
not suitable for our setting and we are in the spirit of the updates in [6]. How-
ever, we want to constrain our ontology in order to have checkable properties
ensuring the completeness of ontologies to make the computation of ontologies
resulting from updates efficient.

Following this line of reasoning we interpret the construction of complex con-
cepts as a kind of specification for abstract datatypes. The use of an existential
quantification in IDObject v∃at . AbstPosition corresponds to the definition
of a mandatory attribute “at” indicating a position in the abstract datatype
denoted by IDObject. Conjunction of concepts combines the attributes of the
corresponding datatypes while disjunction of concepts resembles the notion of
variants.

3.1 Constructive Ontologies

Similar to an initialization of all records in new instances of a data-structure we
want to enforce a constructive definition of each individual of a complex concept
in an ABox. For instance, having an individual d for the concept IDObject above,
we know that d has a position and we demand that the ABox should also provide
the knowledge which position d actually has. Furthermore, since we allow for
disjunction of concepts D v Et F we also want to know for each individual in D
whether it belongs to E or F or both. That means that for any individual d of
a (complex) concept the ABox always provides the full information about the
composition and settings of the individual. In other words, the ABox provides
the individuals necessary to name the values of the various attributes and there
is no need to invent new values by introducing Skolem functions.

The same rigor of constructiveness is applied to the specification of roles.
SHIP allows for the definition of composed roles, e.g. by defining r = r1 · r2.
Knowing that two individuals a, b are in the relation r there must be some
individual c such that (a, c) : r1 and (c, b) : r2 holds. We demand that also this
witness is specified explicitly, i.e. the ABox contains some individual c and the
necessary relations between c and the individuals a and b.

These properties can be formalized in the following definition of constructive
ontologies, where E denotes the negation of concept E in negation normalform.

LetO := 〈T,R,A〉 be an ontology wrt. concept namesNC , role namesNR and
individual names NI . The signature of O is ΣO := (ΣC , ΣR, ΣI) ⊆ (NC , NR, NI)
of those names of concepts, roles and individuals occurring in O. An ontology O
is constructive iff the followings hold:

1. if a ∈ ΣI , O ` a : D and O ` D v ∃r.E then there is some b ∈ ΣI with
O ` b : E and O ` (a, b) : r

Constructive DL update and reasoning 9

2. if a ∈ ΣI , O ` a : D and O ` D v (≤ n r.E) then there exist distinct
b1, . . . , bn ∈ ΣI with O ` bi : E and O ` (a, bi) : r

3. if a ∈ ΣI , O ` a : D and O ` D v E1 t E2 then O ` a : Ei or O ` a : Ei for
i = 1, 2

4. if O ` (a, b) : r with a, b ∈ NI and O ` r = r1.r2 then there is some c ∈ ΣI

such that O ` (a, c) : r1 and O ` (c, b) : r2.
5. if O ` (a, b) : r with a, b ∈ ΣI and O ` r = r∗1 then there is a set
{c1, . . . , ck} ⊆ ΣI such that O ` (ci, ci+1) : r1 for all i ∈ {1, . . . , k − 1}
and a = c1 and b = ck.

3.2 Minimal Representation of States

Demanding constructive ontologies to specify a system (TBox + RBox) and its
actual state (ABox), the concepts an individual belongs to are basically defined
bottom up. Given an individual a of a fixed concept D the definition above
requires the specification of additional information about a. In many cases this
“additional” information is now sufficient to deduce that a is (also) of concept
D making the original specification that a : D redundant (even worse, specifying
explicitly a : D would render the ontology inconsistent). Analogously to Nebel
[10] we distinguish between primitive and defined concepts and roles. In a first
step we modify the given TBox by making equalities between concepts explicitly.
Whenever the TBox comprises a set of axioms of the form c v Di, i = 1, . . . , n
we check whether also O ` D1 u . . . u Dn v c holds. If it holds then we replace
the set of axioms by an equation c = D1 u . . . u Dn if that does not violate the
acyclicity condition of the TBox+RBox. Obviously, this change of axioms does
not change the models of the ontology.

Based on this normalized TBox the acyclic dependency relation >c on con-
cepts is used to define that a concept c ∈ Σc is defined iff there is a concept
d ∈ Σc such that c >c d holds and otherwise primitive. Analogously, we use the
acyclic relation >r on roles to define defined and primitive roles.

Now, given an ontology O we will enforce non-redundancy by imposing that
all ABox-assertions are only primitive concept and role assertions. Furthermore,
we use the criteria from the last section to check that O is constructive. As
an example, consider the ontology for Lists from Section 2. The only primitive
concept is EmptyList and the primitive roles are hd and tl. The ABox containing
only the primitive assertions nil:EmptyList, (a,nil):tl is non-redundant, but
not constructive. Adding the primitive assertion (a,e):hd makes it constructive.

3.3 Updates

In our setting, updates of the ABox correspond to state transitions of the spec-
ified system. The updates are initiated either by the processes (cf. Section 2)
running in the system or by the environment interacting with the system. Re-
gardless of the source of an update we demand that updates will always pre-
serve the constructiveness of the ontology. To this end we enforce that they are
specified in a non-redundant form by ABox-assertions exclusively over primitive

10 Serge Autexier and Dieter Hutter

concepts and roles. An update is a pair (α, δ), where α is a consistent set of
primitive ABox-assertions to be added and δ primitive ABox-assertions to be
removed. For a given ontology O = 〈T,R,A〉 and consistent primitive update
(α, δ) the new ABox is determined from the old ABox by

1. If (i : C) ∈ α and (i : D) ∈ A and C and D are disjoint concepts, then (i : D)
is removed;

2. If ((a, b) : R) ∈ α, ((a, c) : R) ∈ A and R is functional, then (a, c) : R is
removed.

Finally, all assertions from δ are removed. Formally, the update is defined by

A′ := α ∪ (A \ (δ ∪{(i : D) ∈ A|(i : C) ∈ α,C and D are disjoint}
∪{((a, c) : R) ∈ A|((a, b) : R) ∈ α,R is functional})

The resulting ontology 〈T,R,A′〉may well be inconsistent, for instance if number
restrictions are violated. If so, the update is refused and we stick to the previous
ontology O. If an action triggered the update, the action fails in the process
semantics. If the environment triggered the update, respective repair processes
must have been specified to synchronize the SHIP-Tool and the environment. If
the ontology is consistent, it is not necessarily constructive. To this end we use
the procedure from the last section to check if the resulting ontology 〈T,R,A′〉
is constructive. If not, the SHIP-Tool can provide detailed information which
information is missing. This can be used to statically analyse the effects of actions
of the defined processes whether they only contain primitive ABox-assertions and
if they are complete enough to preserve constructiveness of the ontology.

3.4 Ramification: Indirect Effect Rules

Sometimes updates do also have indirect or implicit consequences that are not
necessarily known to the process that performs the update. In such a situation,
it might be necessary to integrate the indirect consequences immediately to the
ontology in order to prevent some monitors to fail, as sending another update
would introduce a new point in time on our time axis. The problem of how
to describe the indirect effects of an action – or more generally, an arbitrary
update – in a concise way is known as the ramification problem. In SHIP we use
causal relationships as introduced in [3] called indirect effect rules to describe
indirect effects that are caused by arbitrary updates. An example of an indirect
effect rule is shown in Fig. 2. It works as follows: Given an ontology update from
O to O′, the init-assertions are checked on O′. If additionally cond is satisfied
by O, then the indirect effects in causes are an additional update on O′.

4 Implementation & Applications

The SHIP-Tool is implemented in Scala1 and uses the Pellet Reasoner [12] as
a Description Logic reasoner. The SHIP-Tool is free software and available from

1 www.scala-lang.org

Constructive DL update and reasoning 11

indirect effect CarriedPersonMovesAsWell = {

init = (wc,p):at

causes = (x,p):at

cond = (wc,x):whc_carries , x:Person , wc:WheelChair}

Fig. 2. Indirect Effects

http://www.dfki.de/cps/projects/ship/shiptool/shiptool.en.html. The
SHIP-Tool can be used both in direct interaction with the environment as well
as for simulation and testing.

So far, we have used it mainly in three applications: First, for the orches-
tration of services in an instrumented living environment, the Bremen Ambient
Assisted Living Lab (BAALL)2. In this application we have developed in the
SHIP-Tool processes to manage transport requests from the inhabitants of the
BAALL, to schedule the routes of the wheelchairs operating in the BAALL and
to provide assistance by automatically opening and closing doors and switching
on and off the lights along the routes of the wheelchairs. A second application is
concerned with medical guideline conformant patient treatment, and is pursued
in the course of the SIMPLE project.3 Another application is the SmartTies
system for the management of the documents arising during the development of
safety-critical software.

In all these applications the possibility to include behavior monitoring via
LTL over description logic axioms and dynamic description logic proceses pro-
vides a suitable mechanism to develop the processes. With respect to the up-
dates, the first attempt to deal with updates was – roughly speaking – to simply
include all effects of actions. If the new ontology is inconsistent, then we used
axiom pinpointing to compute a minimal set of ABox-assertions already con-
tained in the previous ABox which must be removed to restore consistency.
That made updates computationally expensive and processes slow. With the
approach presented in this paper, this could be resolved resulting in a sensible
speedup. Moreover, the constraints imposed by the constructiveness criteria on
the ontology and the updates resulted in cleaner ontologies as well as much more
concise formulations of actions.

5 Conclusion

This paper presented the SHIP-Tool as a framework to manage the orchestration
of heterogeneous programs. Each of these programs communicate with the SHIP-
Tool via ABox-updates. The SHIP-Tool allows for the integration of black-box
services by encoding their responses in terms of updates as well as of white-box
programs defined in terms of Dynamic Description Logic and operating natively

2 http://baall.informatik.uni-bremen.de/
3 http://www.dfki.de/cps/projects/simple

12 Serge Autexier and Dieter Hutter

on the concepts defined in the ontology specified in the SHIP-Tool. In the same
way humans interact with the system by ABox-updates. Hence, ABox-updates
become the central notion of computation and we introduced constructive on-
tologies to speed up the computation of such updates. The resulting restrictions
on how ontologies in general and ABoxes in particular have to be specified also
enforce a proper structuring of the provided concepts and roles. Monitors allow
one to control the overall behavior of the orchestrated system and can initiate
appropriate measures depending on the success or failure of the monitor. The
semantics of the SHIP-Tool is based on combining concepts of dynamic logic,
description logic and temporal logic. Embedding these concepts in a combined
logic, which is actually under development, we will also be able to verify prop-
erties of the systems specified and executed inside the SHIP-Tool.

References

1. F. Baader, D. Calvanese, D. L. McGuinness, D. Nardi, and P. F. Patel-Schneider,
editors. The description logic handbook: theory, implementation, and applications.
Cambridge University Press, New York, NY, USA, 2003.

2. F. Baader, S. Ghilardi, and C. Lutz. LTL over description logic axioms. ACM
Transactions on Computational Logic, 2012.

3. F. Baader, M. Lippmann, and H. Liu. Using causal relationships to deal with the
ramification problem in action formalisms based on description logics. In C. G.
Fermüller and A. Voronkov, editors, Logic for Programming, Artificial Intelligence,
and Reasoning - 17th International Conference, LPAR-17, Yogyakarta, Indonesia,
October 10-15, 2010. Proceedings, volume 6397 of Lecture Notes in Computer Sci-
ence, pages 82–96. Springer, 2010.

4. F. Baader and W. Nutt. Basic description logics. In Baader et al. [1], pages 43–95.
5. A. K. Bauer and Y. Falcone. Decentralised ltl monitoring. In D. Giannakopoulou

and D. Méry, editors, FM 2012: Formal Methods - 18th International Symposium,
Paris, France, August 27-31, 2012. Proceedings, volume 7436 of Lecture Notes in
Computer Science, pages 85–100. Springer, 2012.

6. L. Chang, F. Lin, and Z. Shi. A Dynamic Description Logic for Representation
and Reasoning About Actions. In Z. Zhang and J. Siekmann, editors, Procedings
of KSEM 2007, volume 4798 of LNAI, pages 115–127. Springer, 2007.

7. L. Chang, Z. Shi, T. Gu, and L. Zhao. A family of dynamic description logics for
representing and reasoning about actions. J. Autom. Reasoning, 49(1):1–52, 2012.

8. H. Liu, C. Lutz, M. Milicic, and F. Wolter. Updating description logic aboxes. In
P. Doherty, J. Mylopoulos, and C. A. Welty, editors, Proceedings, Tenth Interna-
tional Conference on Principles of Knowledge Representation and Reasoning, Lake
District of the United Kingdom, June 2-5, 2006, pages 46–56. AAAI Press, 2006.

9. D. Nardi and R. J. Brachman. An introduction to description logics. In Baader
et al. [1], pages 1–40.

10. B. Nebel. Terminological reasoning is inherently intractable. Artificial Intelligence,
43:235–249, 1990.

11. A. Pnueli. The temporal logic of programs. In FOCS, pages 46–57. IEEE Computer
Society, 1977.

12. E. Sirin, B. Parsia, B. C. Grau, A. Kalyanpur, and Y. Katz. Pellet: A practical
owl-dl reasoner. J. Web Sem., 5(2):51–53, 2007.

