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Abstract. In logics, there are many ways to represent same facts. With respect to
both reasoning and cognitive complexity, some representations are significantly
less efficient than others. In this paper, we investigate different means of improv-
ing the succinctness of TBoxes expressed in the lightweight description logic EL
that forms a basis of some large ontologies used in practice. As a measure of size,
we consider the number of references to signature elements. We investigate the
problem of finding minimal equivalent representations and show that this task is
NP-complete.
A significant (up to triple-exponential) further improvement can be achieved by
the introduction of auxiliary concept symbols. Thus, we additionally investigate
the task of finding minimal representations for an ontology by extending its sig-
nature. Since arbitrary extension of the ontology with concept symbols can make
the ontology unreadable, we only allow for auxiliary concepts acting as shortcuts
for other concepts (EL concepts and disjunctions thereof) expressed by means
of terms of the original ontology. We show that this task is also NP-complete if
shortcuts represent only EL concepts, and between NP and ΣP

2 , otherwise.

1 Introduction

It is well-known that same facts can be represented in many ways, and that the size
of these representations can vary significantly. Determining and increasing the degree
of succinctness of a particular syntactic representation is an important, but also a very
difficult task: for the average ontology, it is almost impossible to obtain the minimal
representation without tool support. Thus, automated methods that help to assess the
current succinctness of an ontology and generate suggestions on how to increase it
would be highly valued by ontology engineers.

In description logics [1], only few results in this direction were obtained so far.
Baader, Küster, and Molitor [2] investigate rewriting concepts using terminologies in
the narrow sense (sets of equivalence axioms where each defined atomic concept has
exactly one definition). The investigated problem is a special case of minimizing a
knowledge base by computing a minimal equivalent knowledge base. Grimm et al. [3]
propose an algorithm for eliminating semantically redundant axioms from ontologies.
In the above approach, axioms are considered as atoms that cannot be split into parts
or changed in any other way. Bienvenu [4] proposes a normal form called prime im-
plicates normal form for ALC ontologies, which enables fast reasoning. However, as
a side-effect of this transformation, a doubly-exponential blowup in concept size can
occur.



In this paper, we investigate the succinctness for the lightweight description logic
EL [5], which is the logical underpinning of one of the tractable sub-languages (the
so-called profiles [6]) of the W3C-specified OWL Web Ontology Language [7].

First, we consider the problem of finding a minimal equivalent EL representation
for a given ontology. We show that the related decision problem (is there an equivalent
ontology of size ≤ k?) is NP-complete.

Inspired by recent results on uniform interpolation in EL [8], we additionally con-
sider an extended version of the problem. The above results imply that, even for the
minimal equivalent representation of an ontology, an up to triple-exponentially more
succinct representation can be obtained by extending its signature. Auxiliary concept
symbols are therefore important contributors towards the succinctness of ontologies. It
is easy to envision scenarios that demonstrate the usefulness of auxiliary concept sym-
bols for improving succinctness. For instance, when a complex concept C is frequently
used in the axioms of an ontology, the ontology will diminish in size when all occur-
rences of C are replaced by a fresh atomic conceptAC , and an axiomAC ≡ C is added
to the ontology. However, an arbitrary extension of the ontology with concept symbols
whose meaning is not obvious can certainly make the ontology unreadable. In order to
preserve comprehensiveness, we only allow for auxiliary concepts acting as shortcuts
– concepts that are defined using only terms of the original ontology. Presented with
such a shortcut concept, an ontology engineer could find an appropriate comprehensive
name for it. Otherwise, the ontology engineer has to guess the meaning of an auxiliary
concept and the chance that he approves the extension suggested by the tool would be
low.

We demonstrate that auxiliary concept symbols acting as shortcuts for EL concepts
expressed only by means of original ontology terms can lead to an exponential im-
provement of succinctness and that the corresponding decision problem (is there such a
representation of size ≤ k?) is NP-complete.

Further, we show that, if we additionally allow for auxiliary concept symbols that
act as shortcuts for disjunctions of EL concepts on the left-hand side of axioms (en-
codable in EL using several axioms), we can reduce the size of the representation by
a further exponent, thereby obtaining doubly-exponentially more succinct representa-
tions.We show that the corresponding decision problem (is there such a representation
of size ≤ k?) is NP-hard and included in ΣP

2 .

The paper is organized as follows: In Section 2, we recall the necessary prelimi-
naries on description logics. Section 3 demonstrates the potential of auxiliary concept
symbols acting as shortcuts for achieving a higher succinctness. In the same section, we
also introduce the basic definitions of the size of ontologies as well as the investigated
notions of equivalents with and without signature extension. In Sections 4,5, we derive
the complexity bounds for the corresponding decision problems. Finally, we conclude
and outline future work in Section 6. Further details and proofs can be found in the
extended version [9] of this paper.



2 Preliminaries

We recall the basic notions in description logics [1] required in this paper. Let NC
and NR be countably infinite and mutually disjoint sets of concept symbols and role
symbols. An EL concept C is defined as

C ::= A|>|C u C|∃r.C,

where A and r range over NC and NR, respectively. In the following, we use symbols
A,B to denote atomic concepts and C,D,E to denote arbitrary concepts. A terminol-
ogy or TBox consists of concept inclusion axioms C v D and concept equivalence
axioms C ≡ D used as a shorthand for C v D and D v C. The signature of an EL
concept C or an axiom α, denoted by sig(C) or sig(α), respectively, is the set of con-
cept and role symbols occurring in it. To distinguish between the set of concept symbols
and the set of role symbols, we use sigC(C) and sigR(C), respectively. The signature of
a TBox T , in symbols sig(T ) (correspondingly, sigC(T ) and sigR(T )), is defined anal-
ogously. Next, we recall the semantics of the above introduced DL constructs, which
is defined by means of interpretations. An interpretation I is given by the domain ∆I

and a function ·I assigning each concept A ∈ NC a subset AI of ∆I and each role
r ∈ NR a subset rI of ∆I ×∆I . The interpretation of > is fixed to ∆I . The interpre-
tation of an arbitrary EL concept is defined inductively, i.e., (C uD)I = CI ∩DI and
(∃r.C)I = {x | (x, y) ∈ rI , y ∈ CI}. An interpretation I satisfies an axiom C v D
if CI ⊆ DI . I is a model of a TBox, if it satisfies all of its axioms. We say that a TBox
T entails an axiom α (in symbols, T |= α), if α is satisfied by all models of T . A TBox
T entails another TBox T ′, in symbols T |= T ′, if T |= α for all α ∈ T ′. T ≡ T ′ is a
shortcut for T |= T ′ and T ′ |= T .

In addition to EL, we will use disjunction on the left-hand side of axioms to obtain
more succinct representations of EL TBoxes. Note that this extension is of a notational
nature, i.e., does not give us the expressive power to represent more TBoxes than stan-
dard EL. We define an ELD concept C as

C ::= A|>|C u C|C t C|∃r.C,

where A and r range over NC and NR, respectively. The interpretation of an arbitrary
ELD concept is defined analogously to the interpretation of EL concepts with the ex-
tension (C t D)I = CI ∪ DI . An ELD TBox consists of axioms that are either EL
axioms or have the form C v D, where C is an ELD concept and D is an EL concept.
Note that equivalence axioms (C ≡ D) do not contain ELD concepts, since they are a
shortcut for C v D and D v C.

3 Achieving Succinctness in EL

The size of a TBox is often measured by the number of axioms contained in it. This is,
however, a very simplified view of the size in terms of both, cognitive complexity and
reasoning. In this paper, we measure the size of a concept, an axiom, or a TBox by the
number of references to signature elements.



Definition 1. The size of an EL concept D is defined as follows:

– for D ∈ sig(T ), ∫(D) = 1;
– for D = ∃r.C, ∫(D) = ∫(C) + 1 where r ∈ sigR(T ) and C is an arbitrary

concept;
– for D = C1 u C2, ∫(D) = ∫(C1) + ∫(C2) where C1, C2 are arbitrary concepts;

The size of an EL axiom or a TBox is accordingly defined as follows:

– ∫(C1 v C2) = ∫(C1) + ∫(C2) for concepts C1, C2;
– ∫(C1 ≡ C2) = ∫(C1) + ∫(C2) for concepts C1, C2.
– ∫(T ) =

∑
α∈T ∫(α) for a TBox T .

In practice, the suitable means that can be used to obtain a compact representation
can differ depending on the scenario. To address cases, in which a signature extension
is not feasible, we first consider the problem of finding the minimal equivalent EL
representation for a given TBox among representations that use the same signature.
Popular examples for avoidable non-succinctness are axioms that follow from other
axioms and sub-concepts that can be removed from axioms without losing any logical
consequences. While non-succinctness is easy to detect in these simple cases, non-
succinctness can occur in many other forms. The ontology T = {C v ∃r.C, ∃r.C v
∃r.D, ∃r.D v D}, for instance, does neither contain any axioms that are entailed by
the remainder of the ontology, nor are there any sub-expressions that can be removed.
However, there exists a smaller representation {C v ∃r.C,C v D,∃r.D v D} of
T . The general version of the corresponding decision problem can be formulated as
follows:

Definition 2 (P1). Given an EL TBox T and a natural number k, is there an EL TBox
T ′ with ∫(T ′) ≤ k such that T ′ ≡ T .

We denote the set {T ′ | T ′ ≡ T } by [T ]. We will show that this decision problem,
which does not involve any signature extensions, is already NP-complete.

Extending the Signature

From the user’s point of view as well as with respect to reasoning, it sometimes makes
sense to introduce fresh concept symbols, for instance, used as shortcuts for complex
concepts that occur frequently in the ontology. It can be a tedious task for an ontol-
ogy engineer to do it in an advantageous way, since, as we will show later on, the
corresponding decision problem is NP-hard. To account for scenarios, in which an in-
troduction of auxiliary concept symbols is desirable, in addition to the decision problem
introduced above we consider the problem of finding succinct representations contain-
ing shortcuts. We demonstrate by means of the following example the theoretical po-
tential of such an extension of the signature with shortcuts: we show that it can lead to
a doubly-exponentially more succinct representation of TBoxes.

Example 1. Let the sets Ci of concept descriptions be inductively defined by C0 =
{A1, A2}, Ci+1 = {∃r.C1 u ∃s.C2 | C1, C2 ∈ Ci}. For a natural number n, consider
the TBox Tn = {C v B | C ∈ Cn−1}.



Intuitively, the sets Ci of concepts have the shape of binary trees with exponentially
many leaves, each of which can be A1 or A2. Clearly, the concepts grow exponentially
with i. Further, it holds that |Ci+1| = |Ci|2 and consequently |Ci| = 2(2

i). Thus, Tn
contains doubly exponentially many axioms, each of which has exponential size. While
there is no smaller equivalent representation of Tn, this TBox can easily be represented
in a more compact way using auxiliary concept symbols as shortcuts for complex EL
or ELD concept expressions.

First, combining several axioms into a single axiom with a disjunction on the left-
hand side would allow us to reduce the size of Tn from double-exponential to single-
exponential: we can define C0 = {A1tA2} and thus express all elements of the set Cn−1
by means of a single concept Cn−1 that has the shape of a binary tree with the concept
A1 tA2 as leaves. The corresponding EL TBox T ′n can be obtained by introducing the
concept B0 that represents the disjunction A1 t A2 by means of the axioms A1 v B0

and A2 v B0.
Second, by using fresh concept symbols as shortcuts for complex EL concepts, T ′n

can be reduced by a further exponential as follows: we introduce concept symbols Bi
with i ∈ {1, ..., n− 1} to represent each Ci and obtain the following TBox T ′′n :

A1 v B0 (1)
A2 v B0 (2)

Bi+1 ≡ ∃r.Bi u ∃s.Bi i < n− 1 (3)
Bn−1 v B (4)

As a result, the binary tree contracts into a chain of n+3 axioms αj with ∫(αj) ≤ 5.

In general, an extension of the signature has to be meaning-preserving in the sense
that the logical consequences expressed using only the originally given signature remain
unchanged. Formally, the corresponding “equivalence” between TBoxes with different
signatures is captured by the notion of inseparability as investigated by various authors
[10–15] in different variations. We base this work on the deductive notion of insepara-
bility for EL. Two EL TBoxes, T1 and T2, are inseparable w.r.t. a signature Σ if they
have the same EL consequences whose signature is a subset of Σ:

Definition 3. Let T1 and T2 be two general EL TBoxes and Σ a signature. T1 and T2
are Σ-inseparable, in symbols T1 ≡ELΣ T2, if for all EL concepts C,D with sig(C) ∪
sig(D) ⊆ Σ it holds that T1 |= C v D, iff T2 |= C v D.

Thus, the formal requirement for any TBox T ′ obtained from T by means of a
signature extension is that it remains Σ-inseparable from T , where Σ = sig(T ). We
take this into account in the subsequent definitions.

EL-Shortcuts

We now consider the problem of finding small TBoxes that are Σ-inseparable from T
(with Σ = sig(T )) and use explicitly defined EL shortcuts. From Example 1, we can



observe that a significantly higher effect can be achieved if shortcuts are introduced
gradually such that previously introduced shortcuts can be used to define new ones.
The definition below allows for a hierarchy of shortcuts. To ensure that shortcuts form
a hierarchy, we impose an acyclicity condition on the syntactic references within the
definitions of shortcuts.

Definition 4 (EL-Shortcuts). Let T be an EL TBox with sig(T ) = Σ. Then an EL
TBox T ′ is an equivalent with EL-shortcuts, in symbols T ′ ∈ [T ]EL, iff

1. T ′ ≡ELΣ T ;
2. sigR(T ′) = sigR(T );
3. for all Ai ∈ {A1, . . . , An} = sigC(T ′) \ sigC(T ) there exists exactly one concept
Ci (called definition of Ai) such that Ai ≡ Ci ∈ T ′;

4. for all i ∈ {1, . . . , n} it holds that sig(Ci) ⊆ sig(T ) ∪
{Aj | j < i}.

The introduction of EL-shortcuts corresponds to the second transformation of the
TBox given in Example 1. The corresponding decision problem can be stated as follows:

Definition 5 (P2). Given an EL TBox T and a natural number k, is there an EL TBox
T ′ with ∫(T ′) ≤ k such that T ′ ∈ [T ]EL.

It can be shown that the equivalence relation between T and its equivalent given
in Definition 4 is stronger than deductive inseparability. It is called emulation and is
defined as follows:

Definition 6. Let T1 and T2 be two EL TBoxes. T2 emulates T1, in symbols T2 |=em T1,
iff T2 |= T1 and every model of T1 can be extended into a model of T2.

Clearly, T2 |=em T1 implies T2 ≡ELΣ T1 with Σ = sig(T1). The following lemma
establishes the role of EL-shortcuts within TBoxes:

Lemma 1. Let T , T ′ be two EL TBoxes such that T ′ ∈ [T ]EL and {A1, . . . , An} =
sigC(T ′) \ sigC(T ). Further, let Ci be the corresponding definition of Ai. Then for the
TBox Text = T ∪ {Ai ≡ Ci | i ∈ {1, . . . , n}} it holds that Text |=em T .

Proof Sketch. Clearly, the interpretation of each Ai 6∈ Σ is completely determined
by the interpretations of symbols in Σ (due to acyclicity condition on the syntactic
references within the definitions of the shortcuts). Thus, we can extend each model of
T by assigning AIi = CIi and obtain a model of Text. Additionally, Text |= T , since
T ⊆ Text. ut

t-Shortcuts

The second important contribution of additional vocabulary elements to succinctness
of EL TBoxes is their ability to act as a replacement for disjunction on the left-hand
side of axioms. We can obtain a corresponding EL TBox T ′ from an ELD TBox T by
replacing each disjunction C1 t ... t Cn occurring in T by a fresh concept symbol A
and extending T with axioms C1 v A, ..., Cn v A, called definitions of A. We denote
such an EL representation of T by TEL(T ).



Definition 7 (t-Shortcuts). Let T be an EL TBox. Then an EL TBox T ′ is an equiv-
alent with t-shortcuts, in symbols T ′ ∈ [T ]t, iff there is an ELD TBox T ′′ such that
T ′′ ≡ T , sig(T ′′) ⊆ sig(T ) and TEL(T ′′) = T ′.

Introduction of t-shortcuts corresponds to the first transformation in Example 1. The
corresponding decision problem is as follows:

Definition 8 (P3). Given an EL TBox T and a natural number k, is there an EL TBox
T ′ with ∫(T ′) ≤ k such that T ′ ∈ [T ]t.

ELD-Shortcuts

If we simultaneously allow for both types of shortcuts (note that these roles can never
be played by a single concept at the same time!), we obtain the following definition of
equivalents:

Definition 9 (ELD-Shortcuts). Let T be an EL TBox. Then an EL TBox T ′ is an
equivalent with ELD-shortcuts, in symbols T ′ ∈ [T ]ELD, iff there is an ELD TBox T ′′
such that Conditions 1-4 of Definition 4 are true for T ′′ and T ′ = TEL(T ′′).

The corresponding decision problem is stated as follows:

Definition 10 (P4). Given an EL TBox T and a natural number k, is there an EL TBox
T ′ with ∫(T ′) ≤ k such that T ′ ∈ [T ]ELD.

The following inclusion relations between the above introduced notions hold:

[T ] ⊆ [T ]EL ⊆ [T ]ELD

[T ] ⊆ [T ]t ⊆ [T ]ELD
In the following, we show that problems P1-P2 are NP-complete, while the two

problems involving t- and ELD-shortcuts (P3-P4) are between NP and ΣP
2 .

4 Inclusion in NP resp. ΣP
2

In this section, we investigate the upper complexity bound for the problems P1 -P4 and
show that P1 -P2 are in NP and P3 -P4 in ΣP

2 . In case of P1, showing the upper bound
is simple:

Theorem 1. P1 is in NP.

Proof. We ask the non-deterministic algorithm to guess such an equivalent TBox T ′ ≡
T of size ≤ k. Then, we check T ′ ≡ T in PTIME [5]. ut

The inclusion of P2 in NP (and of P3 and P4 in ΣP
2 ) is less straightforward, since

deciding inseparability of EL TBoxes is known to be EXPTIME-complete and emula-
tion is even undecidable [14]. For the inclusion of P3 and P4 in ΣP

2 , we make use of
the following simple lemma:



Lemma 2. Let T be an ELD TBox. TEL(T ) |=em T .

Proof Sketch. We can transform each model of T into a model of T ′ = TEL(T ) by
successively adding AI =

⋃n
i=1 C

I
i for each concept A that is introduced to replace

the disjunction
⊔n
i=1 Ci. Additionally, it can be show that TEL(T ) |= T holds, since

{
⊔n
i=1 Ci v A} ≡ {Ci v A | i ∈ {1, . . . , n}} and “v” is transitive. ut

Theorem 2. P2 is in NP and P3, P4 are in ΣP
2 .

Proof. Let T ′ the corresponding equivalent of an EL TBox T returned by the non-
deterministic algorithm of size ≤ k. Now we consider how to verify that T ′ indeed
fulfills the requirements stated in Definitions 4,7,9.

For P2, we have to verify Conditions 2-4 of Definition 4, which clearly can be done
in polynomial time. In order to verify Condition 1 (T ′ ≡ELΣ T ), it is sufficient to insert
the shortcut definitions into T and then test the equivalence of this extended TBox Text
and T ′ for the following reasons: By Lemma 1, Text |=em T . Due to transitivity of
≡ELΣ , Text ≡ T ′ implies T ′ ≡ELΣ T . It remains to show that Text ≡ T ′ only if T ′ ≡ELΣ
T . Let us assume for contradiction that there exists an inclusion axiom C v D ∈ T ′
such that Text 6|= C v D. Then we can obtain conceptsC ′, D′ with sig(C ′)∪sig(D′) ⊆
Σ by recursively replacing shortcuts by their definitions such that Text 6|= C ′ v D′ and
Text |= C ′ v D′. With, T ≡ELΣ Text we can conclude T 6≡ELΣ T ′.  

For P3, we need to show that there exists an ELD TBox T ′′ such that sig(T ′′) ⊆
sig(T ), T ′ = TEL(T ′′) and T ′′ ≡ T . In case there exists such T ′′, we can obtain it
from T ′ by replacing the introduced concept symbols by the corresponding disjunctions
of definitions. As T ′ and T ′′ are Σ-inseparable with Σ = sig(T ′′) by Lemma 2, it
suffices to show T ′ |= T and T |= T ′′. The first is standard reasoning in EL and
can clearly be performed in polynomial time. The refutation of the latter, i.e., showing
T 6|= T ′′, can be done in NP: if T 6|= T ′′, then, for some concretizationC v D of some
axiom of T ′ (where a concretization is simply the replacement of each disjunction by
one of its disjuncts) T 6|= C v D holds. A non-deterministic machine can simply guess
the axiom and its concretization. Consequently, testing T |= T ′′ is in CONP and P3
thus in ΣP

2 . (Note that it suffices to call the oracle once at the end.)
For P4, we can simply combine these tests. ut
Clearly, the results of this section also apply to tractable extensions of EL.

5 NP-Hardness of P1- P4

In this section, we show the NP-hardness of problems P1 through P4 by a reduction
from the set cover problem, which is one of the standard NP-complete problems. For
a given set S = {S1, S2, . . . , Sn} with carrier set S =

⋃n
i=1 Si, a cover C ⊆ S is a

subset of S, such that the union of the sets in C covers S, i.e., S =
⋃
C∈C C.

The set cover problem is the problem to determine, for a given set S =
{S1, S2, . . . , Sn} and a given integer k, if there is a cover C of S with at most k ≥ |C|
elements.

We will use a restricted version of the set cover problem, which we call the dense
set cover problem (DSCP). In the dense set cover problem, we require that



– neither the carrier set S nor the empty set is in S,
– all singleton subsets (sets with exactly one element) of S are in S, and
– if a non-singleton set S is in S, so is some subset S′ ⊆ S, which contains only one

element less than S (|S r S′| = 1).

Lemma 3. The dense set cover problem is NP-complete.

Proof. Inclusion in NP is inherited from the set cover problem, of which it is a special
instance.

We now reduce solving the set cover problem to solving the dense set cover prob-
lem. We start with a set cover problem for a given S and k, and first check if the carrier
set S is contained in S (if so, the problem is solved). If it is not the case, we identify
the size l of the largest set in S, initialise S ′ to S and extend S ′ using the following
algorithm:

– while l > 1 do
• for all S ∈ S ′, choose an s ∈ S and join S ′ with S r {s}
• decrement l by one.

After this, we join S with {{s} | s ∈ S}, and remove the empty set from S if applicable.
Note that S ′ can easily be constructed in polynomial time. Now we show that there is
a cover C of size ≤ k of S exactly if there is a cover C′ of size ≤ k of S ′. W.l.o.g., we
can assume that ∅ 6∈ C, since we always obtain a cover from any cover C by removing
∅ from it. Since S ⊆ S ′ ∪ {∅}, any cover of S is a cover of S ′. Let C′ be a cover of
size ≤ k of S ′. We can construct a cover C of S by replacing each S′ ∈ C′ by the
corresponding superset S ∈ S. ut

Given the above NP-completeness result, we show that the size of minimal equiva-
lents specified in P1 through P4 is a linear function of the size of the minimal cover. To
this end, we use the lemma below to obtain a lower bound on the size of equivalents.
Intuitively, it states that for each entailed non-trivial equivalence C ≡ A, the TBox
must contain at least one axiom that is at least as large as C ′ ≡ A for some C ′ with
T |= C ≡ C ′:

Lemma 4. Let T be an EL TBox, A ∈ sig(T ) and C,D EL concepts such that T |=
C ≡ A, T |= A v D (the latter is required for induction). Then, one of the following
is true:

1. A is a conjunct of C (including the case C = A);
2. there exists an EL concept C ′ such that T |= C ≡ C ′ and C ′ ./ A ∈ T or
C ′ ./ A uD′ ∈ T for some ./∈ {≡,v} and some concept D′.

Proof Sketch. For the full version of the proof, see extended version of the paper. We
use the sound and complete proof system for general subsumption in EL terminologies
introduced in [8] and prove the lemma by induction on the depth of the derivation of
C v A u D. We assume that the proof has minimal depth and consider the possible
rules that could have been applied last to derive C v A u D. In each case the lemma
holds. ut

The encoding of the dense set cover problem as P1-P4 is as follows.



Consider an instance of the dense set cover problem with the carrier set A =
{B1, . . . , Bn}, the set S = {A1, . . . , Am, {B1}, . . . , {Bn}} of subsets that can be
used to form a cover. By interpreting the set and element names as atomic concepts, we
can construct TSbase as follows:

TSbase = {A′′ ≡ A′ uB | A′′, A′ ∈ S, B ∈ A,A′′ = A′ ∪ {B}, A′′ 6= A′}.

Observe that the size of TSbase is at least 3m. Clearly, TSbase |= Ai ≡
d
B∈Ai

B.
Let TS = TSbase ∪ {A ≡

d
B∈AB}. We establish the connection between the size of

TS equivalents and the size of the cover of S as follows:

Lemma 5. TS has an equivalent (as specified in P1-P4) of size ∫(TSbase) + k + 1 if,
and only if, S has a cover of size k.

Proof. For the if-direction, assume that S has a cover of size k. We construct T ′S of
size ∫(TSbase) + k+1 as follows: T ′S = TSbase ∪ {A ≡

d
A′∈C A

′}. Clearly, T ′S ≡ TS .
Note that T ′S ∈ [TS ] and, therefore, also T ′S ∈ [TS ]t, [TS ]EL, [TS ]ELD.

For the only-if-direction, we assume that k is minimal and argue that no equivalent
T ′ ∈ [TS ]ELD of size ≤ ∫(TSbase) + k can exist. Assume that T is a minimal TBox
with T ∈ [TS ]ELD. With the observation, that the m + n atomic concepts that repre-
sent elements of S are pairwise not equivalent with each other or the concept A that
represents the carrier set, we can conclude that no two atomic concepts are equivalent.
From Lemma 4 it follows that, for each Ai with i ∈ {1, . . . ,m}, there is an axiom
Ci ≡ C ′i ∈ T or Ci v C ′i ∈ T such that T |= Ci ≡ Ai and Ai is a conjunct of C ′i
or Ai = C ′i. Since there are no equivalent atomic concepts and Ci 6= Ai due to the
minimality of T , the size of each such axiom is at least 3 and none of these axioms
coincide. We will later make use of two obvious properties (*) of these axioms:

1. since TS 6|= Ai v A, A cannot occur as a conjunct of Ci or as a conjunct of C ′i;
2. these axioms cannot be (parts of) the definitions of atomic concepts representing

disjunctions (as Ai is a conjunct of C ′i) or shortcuts (T |= Ci ≡ Ai).

Finally, we estimate the size of the remaining axioms and show that their cumulative
size is > k. It also follows from Lemma 4 that there exists an axiom C ≡ C ′ ∈ T or
C v C ′ ∈ T such that T |= C ≡ A and A is a conjunct of C ′ or A = C ′. It holds
that T |= C ≡

d
B∈AB. We also know that for no proper subset S′ ( A it holds that

T |=
d
B∈S′ B v C.

IfC does not contain any shortcuts or disjunction replacements, then we have found
a cover of S and the size of the axiom must be≥ k+1. Assume that it contains auxiliary
shortcut and disjunction concepts and let C ′ be the concept obtained by replacing all
these concepts recursively in C until sig(C ′) ⊆ sig(TS). It is clear that the cumulative
size of the corresponding definitions for these auxiliary concept symbols cannot be
smaller than the size of C ′, which does not contain any concept symbols twice. Since
T |= C ′ ≡ C, we have once more found a cover of S and the size of this axiom plus the
size of definition axioms must be ≥ k + 1. From the two properties (*) of the axioms
definition Ai we can conclude that none of these axioms can coincide. Thus, the overall
size of T must be ≥ ∫(TSbase) + k + 1. ut



Theorem 3. P1 through P4 are NP-hard.

Proof. The theorem is an immediate consequence of Lemma 5. It establishes that all
four problems can be used to solve the dense set cover problem, which is NP-complete
according to Lemma 3. ut

Thus, we establish completeness of the first two problems:
Theorem 4. P1 and P2 are NP-complete. ut

6 Summary and Outlook

In this paper, we have considered the problem of finding minimal equivalent representa-
tions for ontologies expressed in the lightweight description logic EL that forms a basis
of some large ontologies used in practice. We have shown that the task of finding such
a representation (or rather: its related decision problem) is NP-complete.

In addition to studying the problem of computing minimal equivalent TBoxes, we
investigated the task of finding minimal representations for ontologies under signature
extension. We considered scenarios, where auxiliary concepts are allowed to be used
as shortcuts for complex EL concepts. We showed that this task is also NP-complete.
For the corresponding decision problem with auxiliary concepts acting as shortcuts for
a disjunction of EL concepts, we have established NP-hardness and inclusion in ΣP

2 .
The same bounds hold for the combination of the two ways of extending the signature.

There are various natural extensions of this work. The results obtained within this
paper can easily be transferred to the context of ontology reuse, where a sub-signature
becomes obsolete in a new context and a compact representation of the facts about
the remaining terms is sought-after. Recent results on ontology reuse show that neither
uniform interpolation nor standard module extraction guarantee the optimality of the
extracted ontology [16].

Further, a question that naturally arises is that of tight complexity bounds when
shortcuts for disjunctions are allowed for. Another target would be the complexity of
identifying minimal TBoxes by the means of an arbitrary inseparable TBox, where we
waive the requirement of explicitly defining the meaning of new concepts. An EXP-
TIME upper bound for this problem is implied from the fact that the set of candidate
TBoxes is exponential, and so is the general test for inseparability in EL.

Minimizing representations is, of course, an interesting problem for all logics, and
similar questions can (and should) be asked for more expressive ontology languages.

While the concern of this paper is the complexity of the above problems, a natural
follow-up task would be to develop efficient algorithms and tools that support ontology
engineers in the development of succinct representations of their ontologies. Natural
targets would be good heuristics and efficient approximations. For the latter, our proofs
contain the bad news that there is no linear approximation scheme, as the set cover
problem has no logarithmic approximations unless P equals NP.

Finally, from practical point of view, it would be very interesting to investigate the
potential improvement of succinctness in existing medical ontologies. Such a case study
can be carried out after the corresponding tool support becomes available.
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