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Abstract. To extract terminological knowledge from data, Baader and
Distel have proposed an effective method that allows for the extraction
of a base of all valid general concept inclusions of a given finite interpre-
tation. In previous works, to be able to handle small amounts of errors in
our data, we have extended this approach to also extract general concept
inclusions which are “almost valid” in the interpretation. This has been
done by demanding that general concept inclusions which are “almost
valid” are those having only an allowed percentage of counterexamples
in the interpretation. In this work, we shall further extend our previous
work to allow the interpretation to contain both trusted and untrusted
individuals, i. e. individuals from which we know and do not know that they
are correct, respectively. The problem we then want to solve is to find a
compact representation of all terminological knowledge that is valid for
all trusted individuals and is almost valid for all others.

1 Introduction

Constructing description logic knowledge bases is an expensive, time-consuming
and often cumbersome task. The main reason for this is that it almost always has
to be conducted by human experts, since they provide the means to (more or less)
reliably transform informally stated knowledge into a formal reformulation. Thus,
methods to assist human experts in constructing these ontologies would be highly
helpful. For example, one could provide a first, rough approximation of the desired
knowledge base, i. e. a sketch of the ontology, that the expert then could build upon.

The extraction of such first knowledge bases is a widely studied topic. Interest-
ing approaches in this direction have been proposed by Völker and Niepert [14]
with their method of Statistical Schema Induction, which relies on methods from
data mining to extract certain terminological axioms from data given as a set
of RDF triples. Another approach has been discussed by Baader and Distel [3],
which proposes a method to extract a finite base of all valid ℰℒK-general concept
inclusions (GCIs) of a given finite interpretation, relying on methodology from
the mathematical field of formal concept analysis. Such a finite base could then
be used as a starting point for the terminological part of a future knowledge base.

The latter approach has a particular appeal: since bases are complete in the sense
that all valid GCIs expressible in ℰℒK already follow from it, such a base provides
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all the knowledge which is present in the data. However, this approach also has
a drawback: since only valid GCIs are considered, even very rare counterexamples
could invalidate otherwise correct (and useful) GCIs, leading the algorithm to
come up with a lot of special cases to circumvent such errors.

Thus, based upon the approach of Baader and Distel, the author has developed
an extension that allows for finding finite bases of “almost valid” GCIs of a given
finite interpretation [8, 6, 7], an extension which turns out to be somehow similar
to Statistical Schema Induction. To define the notion of “almost valid”, we use the
notion of confidence from data mining [1]: GCIs are “almost valid” if and only if their
confidence is high enough. In other words, the amount of counterexamples for such
a GCI has to be rather small compared to all individuals to which this GCIs applies.

However, within this extension, all individuals in a given interpretation are
suspected to be erroneous, an assumption which may not be correct in general.
We thus extend these results in the present work to include the possibility that we
“trust” certain individuals, i. e. that we state a-priori that they are correct as they
are. This implies that all GCIs which are invalidated by such trusted individuals
are false in our original domain of interest, and should thus not be included in an
according knowledge base.

The target description logic we would like to consider is ℰℒK, i. e. we would like
to extract bases of ℰℒK-GCIs which are “almost valid” for untrusted individuals
and valid for trusted individuals. However, due to technical reasons, we have to
take a detour and need to also consider ℰℒK

gfp, an extension of ℰℒK by means of
cyclic concept descriptions. More precisely, we shall show in this work how to find
bases of ℰℒK

gfp-GCIs in the presence of untrusted individuals. To then obtain from
this base of ℰℒK

gfp-GCIs a base of ℰℒK-GCIs we can use results from [6, 10] showing
theses ℰℒK

gfp-bases can effectively be turned into equivalent ℰℒK-bases. However,
due to space restrictions, we shall not consider this transformation here.

The paper is structured as follows. Firstly, we shall introduce the necessary
notions from the field of description logics as they are needed in this work. More
precisely, we shall introduce the logics ℰℒK and ℰℒK

gfp as well as the notion of
model-based most-specific concept descriptions from [10]. Then, in Section 3, we
shall give a formalization of “almost valid” GCIs and the notion of “trusted” and
“untrusted” individuals. Based upon this, we shall give a first finite base of all such
GCIs in Section 4.3, and extend this result in Section 4.4 to allow us to perform
this computation by means of formal concept analysis. Finally, we close this work
by some conclusions and outlook on future work.

2 Preliminaries

We introduce the necessary definitions from the field of description logics that are
necessary for our further considerations. More precisely, we shall introduce the
description logics ℰℒK and ℰℒK

gfp in Section 2.1 as well as the notion of general
concept inclusions in Section 2.2. In Section 2.3 we shall discuss the notion of
model-based most-specific concept descriptions.



2.1 The Description Logics ℰℒK and ℰℒK
gfp

Let 𝑁𝐶 and 𝑁𝑅 be two disjoint sets. An ℰℒ-concept description 𝐶 is formed
according to the rule

𝐶 ::“ 𝐴 | J | 𝐶 [ 𝐶 | D𝑟.𝐶

where𝐴 P 𝑁𝐶 and 𝑟 P 𝑁𝑅. An ℰℒK-concept description is eitherK or an ℰℒ-concept
description.

The semantics of ℰℒK-concept descriptions are defined through the notion of
interpretations. An interpretation ℐ “ p𝛥ℐ , ¨ℐq consists of a set 𝛥ℐ of individuals
and an interpretation function ¨ℐ which maps concept names 𝐴 P 𝑁𝐶 to subsets
𝐴ℐ of 𝛥ℐ and role name 𝑟 P 𝑁𝑅 to subsets 𝑟ℐ of 𝛥ℐ ˆ𝛥ℐ .

The interpretation function ¨ℐ can naturally be extended to all ℰℒK-concept
descriptions 𝐶,𝐷 in the usual way, i. e.

Kℐ “ H, Jℐ “ 𝛥ℐ , p𝐶 [𝐷qℐ “ 𝐶ℐ X𝐷ℐ ,

pD𝑟.𝐶qℐ “ t 𝑑 P 𝛥ℐ | D𝑒 P 𝛥ℐ : p𝑑, 𝑒q P 𝑟ℐ ^ 𝑒 P 𝐶ℐ u,

where 𝑟 P 𝑁𝑅. We shall call the set 𝐶ℐ the extension of 𝐶 in ℐ. For each 𝑥 P 𝛥ℐ

we shall say that 𝑥 satisfies 𝐶 if and only if 𝑥 P 𝐶ℐ .
The main distinction between ℰℒK

gfp and ℰℒK is that the former allows for cyclic
concept descriptions. More formally, let 𝑁𝐷 be a set disjoint to both 𝑁𝐶 and 𝑁𝑅.
We call this set the set of defined concept names. A concept definition is then an
expression of the form 𝐴 ” 𝐶, where 𝐴 P 𝑁𝐷 and 𝐶 is an ℰℒK-concept description
which can use in the place of concept names from 𝑁𝐶 also concept names from
𝑁𝐷. Let 𝒯 be a finite set of concept definitions where each defined concept names
appears exactly once on the left-hand side of a concept definition in 𝒯 . Then 𝒯
is called a cyclic TBox. We define 𝑁𝐷p𝒯 q as the set of all concept names from 𝑁𝐷

that appear in some concept definition in 𝒯 .
Then, an ℰℒgfp-concept description is defined as a pair p𝐴, 𝒯 q, where 𝒯 is a

cyclic TBox and 𝐴 P 𝑁𝐷 appears on the left-hand side of a concept definition
p𝐴 ” 𝐶q P 𝒯 . An ℰℒK

gfp-concept description is either of the form K or is an
ℰℒgfp-concept description.

As an example of an ℰℒK
gfp-concept description we can consider the concept

description 𝐸, where

𝐸 “ p𝐴, t𝐴 ” Cat[ Dhunts.𝐵

𝐵 ” Mouse[ Dhunts.𝐴 uq.

Intuitively, 𝐸 represents all cats hunting a mouse which again hunts a cat — a
common situation in the old cartoon series “Tom and Jerry.” In other words, given
an interpretation ℐ, the semantics of 𝐸 can be understood as follows: let 𝐴ℐ and
𝐵ℐ be the Ď-maximal subsets of 𝛥ℐ such that

– all individuals in 𝐴ℐ satisfy Cat and have a hunts-successor in 𝐵ℐ , and
– all individuals in 𝐵ℐ satisfy Mouse and have a hunts-successor in 𝐴ℐ .



It can be shown that those maximal sets always exist. We then define 𝐸ℐ :“ 𝐴ℐ .
To define the semantics for ℰℒK

gfp formally and in general, it is necessary to
resolve the cyclic dependencies within ℰℒK

gfp-concept descriptions. This is done
using greatest fixpoint semantics [13, 2]. Since the exact definition of the semantics
of ℰℒK

gfp exceeds the space available for this publication, we leave out the details
and refer the reader to the corresponding publications.

2.2 General Concept Inclusions

Terminological knowledge is represented in the form of general concept inclusions
(GCIs). These are expressions of the form 𝐶 Ď 𝐷, where 𝐶 and 𝐷 are concept
descriptions. We speak of ℰℒK-GCIs if both 𝐶 and 𝐷 are ℰℒK-concept descriptions,
and likewise for other description logics.

The semantics of GCIs is again defined via interpretations. We say that an
interpretation ℐ is a model of a GCI 𝐶 Ď 𝐷 if and only if 𝐶ℐ Ď 𝐷ℐ . If ℐ is a model
of 𝐶 Ď 𝐷, then we shall also say that 𝐶 Ď 𝐷 is valid in ℐ. If 𝐶 Ď 𝐷 is valid in
every possible interpretation we shall say that 𝐶 is subsumed by 𝐷. This fact is
commonly also denoted by 𝐶 Ď 𝐷 (as a statement, not an expression).

If ℒ is a set of GCIs and 𝐶 Ď 𝐷 is another GCI, then we say that ℒ entails
𝐶 Ď 𝐷 and write ℒ |ù p𝐶 Ď 𝐷q, if and only if for every interpretation 𝒥 which
is a model of all GCIs in ℒ, 𝒥 is also a model of 𝐶 Ď 𝐷.

Since we are going to extract terminological knowledge from interpretations,
we can ask for the set of all ℰℒK

gfp-GCIs for which ℐ is a model. We shall denote
this set Thpℐq and call it the theory of ℐ. A base of ℐ is a set ℬ Ď Thpℐq such that
every GCI from Thpℐq is already entailed by ℬ.

2.3 Model-Based Most-Specific Concept Descriptions

Let us fix a finite interpretation ℐ “ p𝛥ℐ , ¨ℐq. A first attempt to extract termino-
logical knowledge from ℐ is to consider the set Thpℐq of all valid ℰℒK-GCIs of ℐ.
However, it is quite easy to see that the number of valid ℰℒK-GCIs of ℐ is infinite
in general, for if 𝐶 Ď 𝐷 is such a GCI, then D𝑟.𝐶 Ď D𝑟.𝐷 for 𝑟 P 𝑁𝑅 is a valid
ℰℒK-GCI as well. Therefore, we cannot simply use the set Thpℐq as a TBox for
an ontology. Instead, we try to find a finite base ℬ of Thpℐq. Such a base would
contain the same information as Thpℐq, and since it is finite it could be used as a
TBox for an ontology. One of the main results from [10] is to prove that such bases
always exist, and also to give an effective method to compute them. These results
have been achieved using formal concept analysis [11].

The central notion that has been introduced in [10] for bringing together the
description logic ℰℒK and formal concept analysis is the one of model-based most-
specific concept descriptions. Roughly, for a set 𝑋 Ď 𝛥ℐ we are looking for a
concept description that describes the individuals in 𝑋 in the best way possible.
More formally, we call an ℰℒK-concept description 𝐶 a model-based most-specific
concept description for 𝑋 (in ℰℒK) if and only if

– 𝑋 Ď 𝐶ℐ and



– for all ℰℒK-concept descriptions 𝐷 such that 𝑋 Ď 𝐷ℐ , it is true that 𝐶 Ď 𝐷.

It is clear that, if a model-based most-specific concept description for 𝑋 exists, it is
unique up to equivalence. In this case, we shall denote it with 𝑋ℐ , since computing
model-based most-specific concept descriptions is somehow “dual” to computing
extensions 𝐶ℐ of concept descriptions 𝐶. If 𝐶 is a concept description, we shall
write 𝐶ℐℐ instead of p𝐶ℐqℐ , and likewise for 𝑋ℐℐ “ p𝑋ℐqℐ for 𝑋 Ď 𝛥ℐ .

However, it may happen that model-based most-specific concept descriptions
in ℰℒK may not exists. To see this, consider the example interpretation

𝑁𝐶 “ H, 𝑁𝑅 “ t 𝑟 u, 𝛥
ℐ “ t𝑥 u, 𝑟ℐ “ t p𝑥, 𝑥q u.

Then all ℰℒK-concept descriptions D𝑟.D𝑟.. . . D𝑟.J have the set 𝑋 “ t𝑥 u in their
extension, but there does not exist a most specific one. On the other hand, it can be
seen quite easily that the ℰℒK

gfp-concept description p𝐴, t𝐴 ” D𝑟.𝐴 uq is a model-
based most-specific concept description of 𝑋, if we consider ℰℒK

gfp instead of ℰℒK in
the above definition. Indeed, this not a coincidence, as the following result shows.

Theorem 1 (Lemma 4.5 of [10]). Let ℐ be a finite interpretation and 𝑋 Ď 𝛥ℐ .
Then there exists a model-based most-specific concept description of 𝑋 in ℰℒK

gfp.

Because of this result we shall implicitly assume from now on that we are talking
about model-based most-specific concept descriptions in ℰℒK

gfp.
Before we continue, let us note two facts about model-base most-specific concept

descriptions. Firstly, if 𝐶 is an ℰℒK
gfp-concept description, then 𝐶 Ď 𝐶ℐℐ is always

a valid GCI of ℐ. Furthermore, 𝐶ℐℐ is subsumed by 𝐶, again for each ℰℒK
gfp-concept

description 𝐶. Establishing these two facts is not difficult, see [10].

3 Confidence and Trusted Individuals

Recall that we have fixed a finite interpretation ℐ. A first attempt to learn termi-
nological knowledge from ℐ was to consider Thpℐq. However, this approach is not
really applicable if we regard this interpretation as somehow faulty, in the sense
that for certain individuals we are not quite sure whether their concept names or
role successors are correct.

Example 2. In [9] the approach by Baader and Distel has been applied to an
interpretation ℐDBpedia that has been extracted from RDF Triples from the DB-
pedia data set by considering the child-relation only. This interpretation had 5262
individuals and ThpℐDBpediaq can be axiomatized by 1252 GCIs.

However, the GCI Dchild.J Ď Person was found not to be valid in ℐDBpedia,
because of the presence of 4 erroneous counterexamples. However, such a GCI
would be considered correct, and it would be preferable if it could be learned,
too. Furthermore, 2547 individuals in ℐDBpedia were positive examples for this
GCI, i. e. they satisfied both Dchild.J and Person. One could then argue that the
4 counterexamples are “not enough” to invalidate the GCI Dchild.J Ď Person, i. e.
this GCI should have been learned as well.



However, it might be the case that for certain individuals we are indeed sure
that the are correct. These individuals we shall call trusted individuals, whereas
the other ones are called untrusted individuals.

Example 3. We consider a classical example here. Suppose that we want to learn
terminological knowledge about birds, and we consider all GCIs were the number
of counterexamples is “small” compared to the number of positive examples (we
shall give a formalization for this shortly). Then, the GCI Birds Ď Flies could be
extracted from the data set, as counterexamples to this are quite rare (penguins, os-
triches and the like). However, these counterexamples are proper counterexamples,
i. e. they are correct.

We can understand the set of all untrusted individuals as a subinterpretation of ℐ.

Definition 4. Let ℐ “ p𝛥ℐ , ¨ℐq be a finite interpretation. A subinterpretation of
ℐ is an interpretation 𝒥 “ p𝛥𝒥 , ¨𝒥 q such that

i. 𝛥𝒥 Ď 𝛥ℐ ,
ii. t𝐴 P 𝑁𝐶 | 𝑥 P 𝐴

𝒥 u “ t𝐴 P 𝑁𝐶 | 𝑥 P 𝐴
ℐ u for all 𝑥 P 𝛥𝒥 , and

iii. t 𝑦 P 𝛥𝒥 | p𝑥, 𝑦q P 𝑟𝒥 u Ď t 𝑦 P 𝛥ℐ | p𝑥, 𝑦q P 𝑟ℐ u for all 𝑥 P 𝛥𝒥 and 𝑟 P 𝑁𝑅.

As already stated in the introduction, we are interested in extracting a compact
representation of all GCIs of ℐ which hold for all trusted individuals and are “almost
valid” for all untrusted ones. To formalize the notion of “almost valid”, we shall
make use of the notion of confidence as follows.

Definition 5. Let ℐ be a finite interpretation, and let 𝐶 Ď 𝐷 be an ℰℒK
gfp-GCI.

Then the confidence of 𝐶 Ď 𝐷 in ℐ is defined as

confℐp𝐶 Ď 𝐷q :“

#

1 if 𝐶ℐ “ H
|p𝐶[𝐷q

ℐ
|

|𝐶ℐ |
otherwise

It can be seen quite easily that confℐp𝐶 Ď 𝐷q is the largest number 𝑘 ď 1 such
that

|p𝐶 [𝐷qℐ | ě 𝑘 ¨ |𝐶ℐ |.

We shall now formally define the set of GCIs we are interested in.

Definition 6. Let ℐ be a finite interpretation, let 𝒥 be a subinterpretation of ℐ
and let 𝑐 P r0, 1s. The set of confident GCIs in ℐ with untrusted individuals 𝒥 is
defined to be the following set of ℰℒK

gfp-GCIs:

Th𝑐pℐ,𝒥 q :“ t𝐶 Ď 𝐷 | 𝐶ℐz𝛥𝒥 Ď 𝐷ℐz𝛥𝒥

and |p𝐶 [𝐷qℐ X𝛥𝒥 | ě 𝑐 ¨ |𝐶ℐ X𝛥𝒥 | u.

Note that we cannot defineTh𝑐pℐ,𝒥 q to consist of all GCIs satisfying conf𝒥 p𝐶 Ď

𝐷q ě 𝑐 instead of |p𝐶[𝐷qℐX𝛥𝒥 | ě 𝑐 ¨ |𝐶ℐX𝛥𝒥 |. This is because𝐶ℐX𝛥𝒥 “ 𝐶𝒥



is not true in general. However, if one restricts one attention to closed subinter-
pretations 𝒥 , i. e. subinterpretations where no role edges exist between elements
from 𝛥𝒥 and 𝛥ℐz𝛥𝒥 and vice versa, then 𝐶ℐ X𝛥𝒥 “ 𝐶𝒥 is indeed true, as it
has been shown in [10, Lemma 6.12].

Another observation about Th𝑐pℐ,𝒥 q is that this set is not necessarily closed
under entailment. In other words, it is possible that Th𝑐pℐ,𝒥 q |ù p𝐶 Ď 𝐷q but
p𝐶 Ď 𝐷q R Th𝑐pℐ,𝒥 q. However, we can consider GCIs in Th𝑐pℐ,𝒥 q as valid
in a certain domain of interest, and counterexamples in 𝒥 as erroneous. Then
p𝐶 Ď 𝐷q R Th𝑐pℐ,𝒥 q, which just means that the amount of counterexamples in
𝒥 is too high, indicates that either the data ℐ is not sufficiently good enough for
learning 𝐶 Ď 𝐷 (if it is not valid in our domain) or that some GCIs in Th𝑐pℐ,𝒥 q
are actually not valid in our domain. In both cases, further refinement is necessary,
for the first case by checking completeness with respect to the underlying domain
of interest [5], and in the second case by finding reasons for errors in Th𝑐pℐ,𝒥 q,
for example using axiom pinpointing [4].

4 Axiomatizing GCIs in the Presence of Untrusted
Individuals

We shall now show how to axiomatize Th𝑐pℐ,𝒥 q. To this end, we show in Sec-
tions 4.3 and 4.4 how one can compute finite bases of Th𝑐pℐ,𝒥 q, i. e. finite sets
ℬ Ď Th𝑐pℐ,𝒥 q such that all GCIs in Th𝑐pℐ,𝒥 q are already entailed by ℬ. To this
end, we shall make use of results obtained by Baader and Distel [10, 3], which are
introduced in Section 4.2. As these results make use of formal concept analysis,
we shall first introduce some notions of it first.

4.1 Formal Concept Analysis

Formal concept analysis is a subfield of mathematical order theory that is usually
concerned with investigating different representations of complete lattices. However,
is has also been used in different areas, as in data mining and classification.

The fundamental notion of formal concept analysis [11] is the one of a formal
context. A formal context is a triple K “ p𝐺,𝑀, 𝐼q where 𝐺 and 𝑀 are sets and
𝐼 Ď 𝐺ˆ𝑀 . Intuitively, we think of the set𝐺 as the set of objects, the set𝑀 as the set
of attributes, and of the set 𝐼 as an incidence relation between objects and attributes.
If 𝑔 P 𝐺 and𝑚 P𝑀 , we say that 𝑔 has the attribute𝑚 if and only if p𝑔,𝑚q P 𝐼. A for-
mal context L “ p𝐻,𝑁, 𝐽q is a subcontext of K if and only if 𝐻 Ď 𝐺,𝑁 Ď𝑀,𝐽 Ď 𝐼.

For a set of objects 𝐵 Ď 𝐺, we can ask for the set 𝐵1 of common attributes of
all objects in 𝐵, i. e.

𝐵1 “ t𝑚 P𝑀 | @𝑔 P 𝐵 : p𝑔,𝑚q P 𝐼 u.

The set 𝐵1 is called the derivation of 𝐵 in K. Dually, we define for 𝐴 Ď𝑀 the set
𝐴1 of all objects satisfying all attributes in 𝐴.

In the formal context K we can ask the question whether an object 𝑔 that has all
attributes from a set 𝐴1 always also has all attributes from a set 𝐴2, i. e. whether



it is true that 𝑔 P 𝐴1
1 implies 𝑔 P 𝐴1

2. We can formalize this question as follows: we
call a pair p𝐴1, 𝐴2q with 𝐴1, 𝐴2 Ď𝑀 an implication, usually written as 𝐴1 Ñ 𝐴2.
We shall say that the implication 𝐴1 Ñ 𝐴2 is valid in K if and only if 𝐴1

1 Ď 𝐴1
2.

The set of all implications 𝐴1 Ñ 𝐴2 with 𝐴1, 𝐴2 Ď𝑀 is denoted by Impp𝑀q, and
the set of all valid implications of K is called its theory and is denoted by ThpKq.

A set ℒ Ď Impp𝑀q of implications entails an implication 𝐴1 Ñ 𝐴2 if and only if
for all contexts in whichℒ is true, the implication𝐴1 Ñ 𝐴2 is true as well. A setℒ Ď
ThpKq is called a base of K if and only if all valid implications of K are entailed by ℒ.

It is obvious that we can extend each set 𝒦 Ď ThpKq to a base of K, provided
that K is finite. We call ℒ Ď ThpKq a base with background knowledge 𝒦 if and
only if ℒY𝒦 is a base of K. If 𝒦 “ H, then bases with background knowledge 𝒦
are just bases of K.

A particularly interesting base is the so called canonical base CanpK,𝒦q of
K, for some given background knowledge 𝒦. Making the definition of this base
understandable is hardly possible in the given amount of space, and we refer the
reader to [11] for further details. However, we still note that it is well known that
CanpK,𝒦q is a base of smallest cardinality with background knowledge 𝒦, i. e.
every set of implications with less elements than CanpK,𝒦q cannot be a base of
K with background knowledge 𝒦.

4.2 Results by Baader and Distel

To connect description logics with formal concept analysis, Baader and Distel make
use of the notion of of model-based most-specific concept descriptions, and define a
formal context Kℐ which captures all relevant information on the valid ℰℒK

gfp-GCIs
of ℐ. For this, we define

𝑀ℐ :“ tKu Y𝑁𝐶 Y t D𝑟.𝑋
ℐ | 𝑟 P 𝑁𝑅, 𝑋 Ď 𝛥ℐ , 𝑋 ‰ Hu.

The set 𝑀ℐ has the particular property that all model-based most-specific concept
descriptions in ℐ are expressible in terms of 𝑀ℐ [10]: let us denote for a set 𝑈 Ď𝑀ℐ
with

d
𝑈 the concept description that is eitherJ, when 𝑈 is empty, or 𝑉1[ . . .[𝑉𝑛,

when 𝑈 “ t𝑉1, . . . , 𝑉𝑛 u. Then a concept description 𝐶 is expressible in terms of
𝑀ℐ if and only if there exists a set 𝑁 Ď𝑀ℐ such that 𝐶 ”

d
𝑁 .

Having defined the set 𝑀ℐ , we can introduce the notion of the induced context of
ℐ. This is the formal context Kℐ “ p𝛥

ℐ ,𝑀ℐ ,∇q, where for all 𝑥 P 𝛥ℐ and 𝐶 P𝑀ℐ ,
it is true that 𝑥∇𝐶 if and only if 𝑥 P 𝐶ℐ .

The derivation operators in Kℐ , the interpretation function ¨ℐ and model-based
most-specific concept descriptions are closely related.

Proposition 7. Let 𝐴 Ď 𝛥ℐ , 𝐵 Ď𝑀𝐼 . Then 𝐴ℐ ”
d
𝐴1 and 𝐵1 “ p

d
𝐵qℐ , where

the derivations are conducted in Kℐ .

With some more technical machinery it can even be shown that p
d
𝐴qℐℐ “

d
𝐴2 is

true for each 𝐴 Ď𝑀ℐ , i. e. model-based most-specific concept descriptions and the
derivation operators in the induced context of ℐ are closely related. This connection
also extends to the canonical base of Kℐ and ℰℒK

gfp-bases of ℐ.



Theorem 8 (5.13 and 5.18 of [10]). Let ℐ be a finite interpretation and define

𝑆ℐ “ t t𝐶 u Ñ t𝐷 u | 𝐶,𝐷 P𝑀ℐ , 𝐶 Ď 𝐷 u.

Then the set

ℬCan :“ t
l

𝑈 Ď p
l

𝑈qℐℐ | p𝑈 Ñ 𝑈2q P CanpKℐ , 𝑆ℐq u

is a finite ℰℒK
gfp-base of ℐ of minimal cardinality.

Note that the set 𝑆ℐ contains knowledge which is trivially true in every interpre-
tation, but not necessarily in every formal context. More precisely, if 𝐶 Ď 𝐷, then
we do not need to state this GCI explicitly in a base. However, the corresponding
implication t𝐶 u Ñ t𝐷 u may not necessarily be valid in every formal context,
and therefore bases of K have to contain information to entail such implications.
However, we are only interested in bases of ℐ, which is why we add the set 𝑆ℐ as
background knowledge.

4.3 A First Finite Base

The aim of this section is to provide a first result for axiomatizing the interpretation
ℐ with untrusted individuals 𝒥 . To this end we shall make use of ideas from M.
Luxenburger’s theory of partial implications in formal contexts [12]. Due to space
restrictions, however, we shall not recall his ideas in the original setting here, but
shall discuss them in the appropriate reformulation to our setting only.

The two ideas from Luxenburger’s work we shall make use of are actually quite
simple. First of all, we observe that

Thpℐq Ď Th𝑐pℐ,𝒥 q.

Therefore, to finitely axiomatize the set Th𝑐pℐ,𝒥 q, i. e. to find a finite set ℬ Ď
Th𝑐pℐ,𝒥 q that entails all GCIs in Th𝑐pℐ,𝒥 q, it suffices to find a finite base 𝒞 of
Th𝑐pℐ,𝒥 qzThpℐq, since then the set

ℬCan Y 𝒞

will be a finite base of Th𝑐pℐ,𝒥 q.
We thus concentrate on finding such a finite base 𝒞 of Th𝑐pℐ,𝒥 qzThpℐq, i. e.

on finding a finite set 𝒞 Ď Th𝑐pℐ,𝒥 qzThpℐq which already entails all GCIs
in Th𝑐pℐ,𝒥 qzThpℐq. For this, we make two observations for GCIs p𝐶 Ď 𝐷q P
Th𝑐pℐ,𝒥 qzThpℐq.

Firstly, it is true that

p𝐶 Ď 𝐷q P Th𝑐pℐ,𝒥 q ðñ p𝐶ℐℐ Ď 𝐷ℐℐq P Th𝑐pℐ,𝒥 q.

This is mainly due to the fact that 𝐸ℐℐℐ “ 𝐸ℐ and p𝐸 [ 𝐹 qℐ “ p𝐸ℐℐ [ 𝐹 ℐℐqℐ

are true for all ℰℒK
gfp-concept descriptions 𝐸,𝐹 , as can be seen easily from the

definition of model-based most-specific concept descriptions. We thus obtain

𝐶ℐz𝛥𝒥 Ď 𝐷ℐz𝛥𝒥 ðñ 𝐶ℐℐℐz𝛥𝒥 Ď 𝐷ℐℐℐz𝛥𝒥

|p𝐶 [𝐷qℐ X𝛥𝒥 | ě 𝑐 ¨ |𝐶ℐ X𝛥𝒥 | ðñ |p𝐶ℐℐ [𝐷ℐℐqℐ X𝛥𝒥 | ě 𝑐 ¨ |𝐶ℐℐℐ X𝛥𝒥 |



Secondly, if ℬ is a base of Thpℐq, then

ℬ Y t𝐶ℐℐ Ď 𝐷ℐℐ u |ù p𝐶 Ď 𝐷q,

since ℬ |ù p𝐶 Ď 𝐶ℐℐq, and 𝐷ℐℐ Ď 𝐷.
Thus, let us define

Confpℐ, 𝑐,𝒥 q :“ t𝐶ℐℐ Ď 𝐷ℐℐ | p𝐶ℐℐ Ď 𝐷ℐℐq P Th𝑐pℐ,𝒥 q u,

It has been shown in [10] that if ℐ is finite, there exist only finitely many different
model-based most-specific concept descriptions up to equivalence. Therefore, we
immediately obtain the following result:

Theorem 9. Let ℐ be a finite interpretation, 𝒥 be a subinterpretation of ℐ and
𝑐 P r0, 1s. If ℬ is a finite base of ℐ, then the set

ℬ Y Confpℐ, 𝑐,𝒥 q

is a finite base of Th𝑐pℐ,𝒥 q.

4.4 Computing a Base by means of FCA

The result of the previous section provides us with an effective method to compute
bases of confident GCIs in the presence of trusted and untrusted individuals. In
this section, we shall extend these result to allow us a computation of such a base
using methods from formal concept analysis. More precisely, we shall see that we
can view our initial data ℐ and 𝒥 as a certain formal context, and computing a
base of ℐ with untrusted individuals 𝒥 can then be understood as computing a
certain set of implications from this context.

There are two reasons why we are interested in such a transformation. Firstly, the
overall goal of our considerations is to adapt the algorithm of attribute exploration
from formal concept analysis to our setting of extracting terminological knowledge
from interpretations (see also Section 5). Secondly, such a reformulation might
allow us to use high performance algorithms from the field of data mining to support
us in our task, because the field of formal concept analysis can be understood as
a theoretical foundation of data mining [15].

The actual transformation is now quite simple: as for general concept inclusions,
we can define the notion of confidence for implications as well, i. e. if K is a formal
context and 𝐴 Ñ 𝐵 an implication then confKp𝐴 Ñ 𝐵q :“ 1 if 𝐴1 “ H and
confKp𝐴Ñ 𝐵q “ |p𝐴Y𝐵q1|{|𝐴1| otherwise. We shall denote with Imp𝑐pKq the set
of all implications from Impp𝑀q which have confidence at least 𝑐 in K.

The transformation then uses the induced context Kℐ of ℐ and asserts that a
certain set of implications yields a base of Th𝑐pℐ,𝒥 q.

Theorem 10. Let ℐ be a finite interpretation, 𝒥 be a subinterpretation of ℐ and
𝑐 P r0, 1s. Let us denote for 𝑋 Ď 𝛥ℐ with Kℐ |𝑋 the subcontext of Kℐ restricted to
the object set 𝑋, and let us define

𝑇 :“ Imp𝑐pKℐ |𝛥𝒥 q X ThpKℐ |𝛥ℐz𝛥𝒥 q.



If then ℒ Ď 𝑇 is complete for 𝑇 , then
l

ℒ :“ t
l

𝐴 Ď
l

𝐵 | p𝐴Ñ 𝐵q P ℒ u

is a base of Th𝑐pℐ,𝒥 q.

A proof of this theorem can be found in Section A of the appendix.

5 Conclusions and Further Work

In this work we have presented an extension to our previous work of axiomatizing
general concept inclusions using confidence, that takes into account the existence
of trusted individuals from which we can be sure that their properties in the given
data are correct. Essentially, we not only consider general concept inclusions whose
confidence is high enough, but we also require for such general concept inclusions
that they are not falsified by trusted individuals. For these general concept inclu-
sions we have discussed the existence and the computation of bases. In particular,
we have shown that we can utilize methodology from the field of formal concept
analysis to obtain such bases. This has the particular appeal that in the long run we
might be able to utilize fast data mining algorithms to compute bases of confident
general concept inclusions which respect trusted individuals.

The considerations we have presented in this work are part of a larger attempt
to apply the algorithm of attribute exploration from formal concept analysis to
our setting of confident general concept inclusions. This algorithm has been used
before to complete knowledge bases [5]. Essentially, the algorithm generates logical
consequences which can be drawn from the given knowledge and asks the expert
for their validity. If the expert declines, then the given knowledge is incomplete
and the expert has to provide additional information. This algorithm is repeated
as long as new consequences can be generated.

An attribute exploration algorithm in the setting of confident general concept in-
clusions would provide an attempt to solve the issue of rare counterexamples which
comes from the heuristic approach of confident general concept inclusions, as it has
been indicated in Example 3: if we consider all general concept inclusions whose con-
fidence is “high enough”, we may neglect certain counterexamples which are appear
seldom in the data but are correct otherwise. An attribute exploration algorithm
could help to resolve this issue by consulting the expert whether certain confident
general concept inclusions are valid or not. If the expert is then asked a general con-
cept inclusion which has rare counterexample, the expert could add (or mark) these
counterexamples as trusted individuals, thus prohibiting the algorithm from consid-
ering them as errors. Thus, the approach of confident general concept inclusions may
benefit from an attribute exploration algorithm, and its design is part of future work.
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A Proofs for Section 4.4

For completeness, we provide the proofs we have omitted in Section 4.4.
The main idea of the proof is to show that set

d
ℒ satisfies

d
ℒ |ù ℬCan Y

Confpℐ, 𝑐,𝒥 q, and thus Theorem 9 yields the desired result. A crucial cornerstone
in this argumentation is the following lemma.

Lemma 11. Let 𝑀 be a set of concept descriptions, and let ℒ Ď Impp𝑀q and
p𝑋 Ñ 𝑌 q P Impp𝑀q. Then ℒ |ù p𝑋 Ñ 𝑌 q implies

d
ℒ |ù p

d
𝑋 Ď

d
𝑌 q, where

l
ℒ :“ t

l
𝑋 Ď

l
𝑌 | p𝑋 Ñ 𝑌 q P ℒ u.

Proof. Let 𝒥 “ p𝛥𝒥 , ¨𝒥 q be an interpretation such that 𝒥 |ù
d

ℒ. Let us define
a formal context K𝒥 ,𝑀 “ p𝛥𝒥 ,𝑀,∇q via

𝑥∇𝐶 ðñ 𝑥 P 𝐶𝒥

for all 𝑥 P 𝛥𝒥 , 𝐶 P𝑀 .
We shall show now that K𝒥 ,𝑀 |ù ℒ. Let p𝐸 Ñ 𝐹 q P ℒ. Then p

d
𝐸q𝒥 Ď p

d
𝐹 q𝒥 ,

since 𝒥 |ù
d
ℒ. It is not hard to see that p

d
𝐸q𝒥 “ 𝐸1, where the derivation has

been done in K𝒥 ,𝑀 . Therefore, it is true that 𝐸1 Ď 𝐹 1, and thus K𝒥 ,𝑀 |ù p𝐸 Ñ 𝐹 q.
Since ℒ |ù p𝑋 Ñ 𝑌 q, it is true that K𝒥 ,𝑀 |ù p𝑋 Ñ 𝑌 q, i. e. 𝑋 1 Ď 𝑌 1. As

p
d
𝑋q𝒥 “ 𝑋 1, it is thus true that p

d
𝑋q𝒥 Ď p

d
𝑌 q𝒥 , i. e.

d
ℒ |ù p

d
𝑋 Ď

d
𝑌 q.

Theorem 11. Let ℐ be a finite interpretation, 𝒥 be a subinterpretation of ℐ and
𝑐 P r0, 1s. Let us denote for 𝑋 Ď 𝛥ℐ with Kℐ |𝑋 the subcontext of Kℐ restricted to
the object set 𝑋, and let us define

𝑇 :“ Imp𝑐pKℐ |𝛥𝒥 q X ThpKℐ |𝛥ℐz𝛥𝒥 q.

If ℒ Ď 𝑇 is complete for 𝑇 , then
l

ℒ :“ t
l

𝐴 Ď
l

𝐵 | p𝐴Ñ 𝐵q P ℒ u

is a base of Th𝑐pℐ,𝒥 q.

Proof. We need to show two claims, namely

i.
d
ℒ Ď Th𝑐pℐ,𝒥 q and

ii.
d
ℒ is complete for Th𝑐pℐ,𝒥 q.

For the first claim we need to show that for every GCI p
d
𝑋 Ď

d
𝑌 q P

d
ℒ it

is true that

i. |p
d
𝑋 [

d
𝑌 qℐ X𝛥𝒥 | ě 𝑐 ¨ |p

d
𝑋qℐ X𝛥𝒥 |

ii. p
d
𝑋qℐz𝛥𝒥 Ď p

d
𝑌 qℐz𝛥𝒥



For the first subclaim, we observe that confKℐ |𝛥𝒥 p𝑋 Ñ 𝑌 q ě 𝑐 for all p𝑋 Ñ

𝑌 q P ℒ, i. e.
|p𝑋 Y 𝑌 q1 X𝛥𝒥 | ě 𝑐 ¨ |𝑋 1 X𝛥𝒥 |

Since p
d
𝑋qℐ “ 𝑋 1, we obtain

|p
l
p𝑋 Y 𝑌 qqℐ X𝛥𝒥 | ě 𝑐 ¨ |p

l
𝑋qℐ X𝛥𝒥 |,

and from
d
p𝑋 Y 𝑌 q ”

d
𝑋 [

d
𝑌 it follows immediately that

|p
l

𝑋 [
l

𝑌 qℐ X𝛥𝒥 | ě 𝑐 ¨ |p
l

𝑋qℐ X𝛥𝒥 |

as required.
For the second subclaim, we observe that 𝑋 1z𝛥𝒥 Ď 𝑌 1z𝛥𝒥 , since 𝑋 Ñ 𝑌 is

valid in the formal context Kℐ |𝛥ℐz𝛥𝒥 . Since 𝑋 1 “ p
d
𝑋qℐ and 𝑌 1 “ p

d
𝑌 qℐ the

claim follows.
We have therefore shown that

d
ℒ Ď Th𝑐pℐ,𝒥 q.

We now show that
d
ℒ is complete for Th𝑐pℐ,𝒥 q. To this end, we shall show that

i.
d
ℒ |ù p

d
𝑈 Ď p

d
𝑈qℐℐq for all 𝑈 Ď𝑀ℐ , in particular,

d
ℒ |ù ℬCan;

ii.
d
ℒ |ù Confpℐ, 𝑐,𝒥 q.

If we can establish these claims, then by Theorem 9 we obtain from
d

ℒ |ù

ℬCan Y Confpℐ, 𝑐,𝒥 q the completeness of
d
ℒ for Th𝑐pℐ,𝒥 q.

Let 𝑈 Ď𝑀ℐ . Since ℒ entails all valid implications of Kℐ , we obtain

ℒ |ù p𝑈 Ñ 𝑈2q.

By Lemma 11, it follows that ℒ |ù p
d

𝑈 Ď p
d

𝑈2qq. Since p
d
𝑈2q ” p

d
𝑈qℐℐ , we

obtain the validity of the subclaim.
For the second subclaim, let p𝐶ℐℐ Ď 𝐷ℐℐq P Confpℐ, 𝑐,𝒥 q. We define 𝑈 :“

𝐶ℐ , 𝑉 :“ 𝐷ℐ . Then 𝑈ℐ ”
d

𝑈 1 and 𝑉 ℐ ”
d
𝑉 1, so

l
ℒ |ù p𝑈ℐ Ď 𝑉 ℐq ðñ

l
ℒ |ù p

l
𝑈 1 Ď

l
𝑉 1q.

We show that ℒ |ù p𝑈 1 Ñ 𝑉 1q. For this we recall that

|p𝐶ℐℐ [𝐷ℐℐqℐ X𝛥𝒥 | ě 𝑐 ¨ |p𝐶ℐℐqℐ X𝛥𝒥 |

Now since
d
𝑈 1 ” 𝑈ℐ ” 𝐶ℐℐ and

d
𝑉 1 ” 𝐷ℐℐ , we obtain

|p
l

𝑈 1 [
l

𝑉 1qℐ X𝛥𝒥 | ě 𝑐 ¨ |p
l

𝑈 1qℐ X𝛥𝒥 |

As shown before, this implies that

|p𝑈 1 Y 𝑉 1q1 X𝛥𝒥 | ě 𝑐 ¨ |𝑈2 X𝛥𝒥 |,

where the derivations are conducted in Kℐ . In other words, it is true that

confKℐ |𝛥𝒥 p𝑈
1 Ñ 𝑉 1q ě 𝑐.

Thus, ℒ |ù p𝑈 1 Ñ 𝑉 1q, and Lemma 11 implies
d

ℒ |ù p
d

𝑈 1 Ď
d

𝑉 1q, thusd
ℒ |ù p𝑈ℐ Ď 𝑉 ℐq “ p𝐶ℐℐ Ď 𝐷ℐℐq, as required.
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