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Abstract. Recently, exact conditions for the existence of the least com-
mon subsumer (lcs) computed w.r.t. general EL-TBoxes have been de-
vised [13]. This paper extends these results and provides necessary and
suffcient conditions for the existence of the lcs w.r.t. EL+-TBoxes. We
show decidability of the existence in PTime and polynomial bounds on
the maximal role-depth of the lcs, which in turn yields a computation
algorithm for the lcs w.r.t. EL+-TBoxes.

1 Introduction

In the area of Description Logics (DLs) the least common subsumer (lcs) is an
inference that is applied to a collection of concepts and yields a complex concept
that captures all commonalities of the input concepts. Unfortunately, the lcs
doesn’t need to exist, if computed w.r.t. general EL-TBoxes [3]. Let’s consider
the TBox axioms:

Woman v Human u ∃has-Grandparent.Woman,

Man v Human u ∃has-Grandparent.Man,

Human v ∃has-Parent.Human.

We want to compute the lcs of Woman and Man. Both are Human and have Grand-
parents that are Woman or Man, respectively. This leads to a cyclic definition and
thus the least common subsumer cannot be captured by a finite EL-concept, since
this would need to express the cycle.

The DL EL+ allows, in addition to EL, for role inclusion axioms as for exam-
ple:

has-Parent ◦ has-Parent v has-Grandparent

If we consider the lcs of Woman and Man w.r.t. a knowledge base that in addition
to the axioms above also contains this role inclusion axiom, then the lcs exists
and is just Human. We can observe that the existence of the lcs does not merely
depend on whether the TBox is cyclic.
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In fact, for cyclic definitorial EL-TBoxes exact conditions for the existence of
the lcs have been devised [4]. For the case of general EL-TBoxes such conditions
were shown recently in [13]. In this paper we want to extend these results to EL+.
Since in EL+ no expressive power on the level of concepts is added compared to
EL and every general EL-TBox is also a general EL+-TBox, the non-existence of
the lcs w.r.t. to general TBoxes carries over to EL+.

There are also several approaches to compute the lcs even in the presence of
general TBoxes. In [9] an extension of EL with greatest fixpoints was introduced,
where the lcs concepts always exist. Computation algorithms for approximate
solutions for the lcs were devised in [6, 11] and were also extended to EL+ [8].
The last two methods simply compute the lcs-concept up to a given k, a bound
on the maximal nestings of quantifiers. If the lcs exists and a large enough k
was given, then these methods yield the exact solutions. However, to obtain the
least common subsumer by these methods in practice, a decision procedure for
the existence of the lcs w.r.t. general EL+-TBoxes and a method for computing
a sufficient bound k is still needed. This paper provides this method for the lcs.
Similar to the case of approximate solutions for the lcs [8, 11], it also turns out
in our case that the results shown for EL (in [13]) can be easily extended to EL+.

In this paper we first introduce basic notions for the DL EL+ and its canonical
models, which serve as a basis for the characterization of the lcs in the subsequent
sections. There we show that the characterization can be used to verify whether
a given common subsumer is indeed the least one and show that the size of the
lcs, if it exists, is polynomially bounded in the size of the input. These results
yield a decision procedure for the existence problem for the lcs in EL+. The
paper ends with some conclusions.

2 Preliminaries

2.1 The Description Logic EL+

Let NC and NR be disjoint sets of concept and role names. Let A ∈ NC and
r ∈ NR. EL-concepts are built according to the syntax rule

C ::= > | A | C uD | ∃r.C

An interpretation I = (∆I , ·I) consists of a non-empty domain ∆I and a
function ·I that assigns subsets of ∆I to concept names and binary relations on
∆I to role names. The function is extended to complex concepts in the usual
way. For a detailed description of the semantics of DLs see [1].

Let C, D denote EL-concepts. A general concept inclusion (GCI) is an ex-
pression of the form C v D. The DL EL+ allows also for role inclusion axioms
(RIAs) of the form r1 ◦ ... ◦ rn v r with n ≥ 1 and ri ∈ NR for i = 1, ..., n and
r ∈ NR. A (general) TBox T is a finite set of GCIs and an RBox R is a finite
set of RIAs. An ontology O consists of a TBox T and an RBox R, denoted by
O = (T ,R).1

1 Since we only use the DL EL+, we write ‘concept’ instead of ‘EL-concept’ and assume
all TBoxes and RBoxes to be written in EL+ in the following.



A GCI C v D is satisfied in an interpretation I iff CI ⊆ DI . The ◦ operator
on roles is interpreted as

rI ◦ sI := {(d, f) | ∃e ∈ ∆I s.t. (d, e) ∈ rI ∧ (e, f) ∈ sI}.

A RIA r1 ◦ ... ◦ rn v r is satisfied in an interpretation I if rI1 ◦ ... ◦ rIn ⊆ rI . An
interpretation I is a model of T , if it satisfies all GCIs in T . An interpretation
I is a model of R if it satisfies all RIAs in R. I is a model of an ontology
O = (T ,R) if I is a model of T and R.

An important reasoning task considered for DLs w.r.t. TBoxes and RBoxes
is subsumption. A concept C is subsumed by a concept D w.r.t. an ontology O
(denoted by C vO D) iff CI ⊆ DI holds in all models I of O. A concept C
is equivalent to a concept D w.r.t. O (denoted by C ≡O D) iff C vO D and
D vO C hold. Similarly, a concept C is subsumed by a concept D w.r.t. an
RBox R (denoted by C vR D) iff CI ⊆ DI holds in all models I of R.

Subsumption w.r.t. ontologies can be decided for EL+ in polynomial time [5].
Based on subsumption the inference we are interested in, the least common
subsumer (lcs) is defined.

Definition 1 (least common subsumer). Let C,D be concepts and O an
ontology. The concept E is the lcs of C, D w.r.t. O (lcsO(C,D)) if the properties

1. C vO E and D vO E, and
2. C vO F and D vO F implies E vO F .

are satisfied. If a concept E satisfies Property 1 it is a common subsumer of C
and D w.r.t. O.

The lcs in a DL that offers conjunction is unique up to equivalence, thus we
speak of the lcs. In contrast to this, common subsumers are not unique, thus we
write F ∈ csO(C,D).

The role depth (rd(C)) of a concept C denotes the maximal number of nest-
ings of ∃ in C. If in Definition 1 the concepts E and F have a role-depth bound
less than or equal k, then E is the role-depth bounded lcs (k-lcsO(C,D)) of C
and D w.r.t. O, which is also unique up to equivalence.

2.2 Canonical Models and Simulation Relations

The correctness proof of the computation algorithms for the lcs depends on
the characterization of subsumption. In case of the lcs in EL without a TBox,
homomorphisms between syntax trees of concepts [2] were used. A characteriza-
tion w.r.t. general EL-TBoxes using canonical models and simulations was given
in [10]. This characterization was extended to EL+ and RBoxes in [12].

Let X be a concept, a TBox, an RBox or an ontology, then sub(X) denotes
the subconcepts in X.

Definition 2 (canonical model [12]). Let C be a concept and O = (T ,R) an
ontology. The canonical model IC,O of C and O is defined as follows:



– ∆IC,O := {dC} ∪ {dC′ | ∃r.C ′ ∈ sub(C) ∪ sub(T )};
– AIC,O := {dD | D vO A}, for all A ∈ NC;
– rIC,O := {(dD, dD′) | D vO ∃r.D′ for D′ ∈ sub(T ) or

D vR ∃r.D′ for D′ ∈ sub(C)} for all r ∈ NR.

To identify properties of canonical models we use simulation relations between
interpretations.

Definition 3 (simulation). Let I1 and I2 be interpretations. S ⊆ ∆I1 ×∆I2
is called a simulation from I1 to I2 if the following conditions are satisfied:

1. For all concept names A ∈ NC and all (e1, e2) ∈ S it holds: e1 ∈ AI1 implies
e2 ∈ AI2 .

2. For all role names r ∈ NR and all (e1, e2) ∈ S and all f1 ∈ ∆I1 with
(e1, f1) ∈ rI1 there exists f2 ∈ ∆I2 such that (e2, f2) ∈ rI2 and (f1, f2) ∈ S.

To denote an interpretation I together with a particular element d ∈ ∆I we write
(I, d). It holds that (I, d) is simulated by (J , e) (written as (I, d) . (J , e)) if
there exists a simulation S ⊆ ∆I × ∆J with (d, e) ∈ S. The relation . is
a preorder, i.e. it is reflexive and transitive. (I, d) is simulation-equivalent to
(J , e) (written as (I, d) ' (J , e)) if (I, d) . (J , e) and (J , e) . (I, d) holds.

Now we summarize some important properties of canonical models in EL+

that were shown in [12].

Lemma 1. Let C be a concept and O an ontology.

1. IC,O is a model of O.
2. For all models I of O and all d ∈ ∆I holds:

d ∈ CI iff (IC,O, dC) . (I, d).
3. C vO D iff dC ∈ DIC,O iff (ID,O, dD) . (IC,O, dC).

This lemma gives us a characterization of subsumption by means of canonical
models. In order to employ it for the characterization of the lcs, we need to recall
some operations on interpretations.

Starting from an element of the domain of an interpretation as the root, the
interpretation can be unraveled into a possibly infinite tree. The nodes of the tree
are words that correspond to paths starting in d. The word π = dr1d1r2d2r3... is
a path in an interpretation I if the domain elements di and di+1 are connected
via rIi+1 for all i.

Definition 4 (tree unraveling of an interpretation). Let I be an interpre-
tation w.r.t. names from NC and NR with d ∈ ∆I . The tree unraveling Id of I
in d is defined as follows:

∆Id := {dr1d1r2...rndn | (di, di+1) ∈ rIi+1 ∧ 0 ≤ i < n ∧ d0 = d};
AId := {σd′ | σd′ ∈ ∆Id ∧ d′ ∈ AI}, for all A ∈ NC;

rId := {(σ, σrd′) | (σ, σrd′) ∈ ∆Id ×∆Id}, for all r ∈ NR.



The length of an element σ ∈ ∆Id (denoted by |σ|), is the number of role names
occurring in σ. If σ is of the form dr1d1r2...rmdm, then dm is the tail of σ denoted
by tail(σ) = dm. The interpretation I`d denotes the finite subtree rooted in d of
the tree unraveling Id containing all elements up to depth `. Such a tree can be
translated into an `-characteristic concept of an interpretation (I, d).

Definition 5 (characteristic concept). Let (I, d) be an interpretation. The
`-characteristic concept X`(I, d) is defined as follows: 2

X0(I, d) :=
l
{A ∈ NC | d ∈ AI}

X`(I, d) := X0(I, d) u
l

r∈NR

l
{∃r.X`−1(I, d′) | (d, d′) ∈ rI}

Another operation that we will use later is the product of two interpretations
that is defined as follows.

Definition 6 (product of interpretations). Let I and J be interpretations.
The product interpretation I × J is defined by

∆I×J := ∆I ×∆J ;

AI×J := {(d, e) | (d, e) ∈ ∆I×J ∧ d ∈ AI ∧ e ∈ AJ }, for all A ∈ NC;

rI×J := {((d, e), (f, g)) | ((d, e), (f, g)) ∈ ∆I×J ×∆I×J

∧ (d, f) ∈ rI ∧ (e, g) ∈ rJ }, for all r ∈ NR.

3 Existence of Least Common Subsumers

In this section we develop a decision procedure for the problem whether for two
given concepts and a given ontology the least common subsumer of these two
concepts w.r.t. the given ontology exists. If not stated otherwise, the two input
concepts are denoted by C and D and the ontology by O.

We follow the method used in [13], which is based on operations and relations
on canonical models. The only difference compared to the setting in [13] is the
presence of RIAs in the RBox. Fortunately, canonical models of concepts w.r.t.
GCIs and RIAs with the properties given in Lemma 1 can also be obtained as
in the case where we have only GCIs. Therefore, the results shown for EL in [13]
can be easily adopted to the case of EL+.

Similar to the approach used in [4] we proceed by the following steps:
1. Devise a method to identify lcs-candidates for the lcs. The set of lcs-

candidates is a possibly infinite set of common subsumers of C and D w.r.t.
O, such that if the lcs exists then one of these lcs-candidates actually is the lcs.

2. Characterize the existence of the lcs. Find a condition such that the prob-
lem whether a given common subsumer of C and D w.r.t. O is least (w.r.t. vO),
can be decided by testing this condition.

2 For a set M of concepts we write
d

M as shorthand for
d

F∈M F . If M is empty,
then

d
M is equal to >.



3. Establish an upper bound on the role-depth of the lcs. We give a bound `
such that if the lcs exists, then it has a role-depth less than or equal `. By the
use of such an upper bound one needs to check only for finitely many of the
lcs-candidates if they are least (w.r.t. vO).

The next subsection addresses the first two problems, afterwards we show
that such a desired upper bound exists.

3.1 Characterizing the Existence of the lcs

The characterization presented here is based on the product of canonical models.
This product construction is adopted from [3, 9] where it was used to compute
the lcs in EL with gfp-semantics and in the DL ELν , respectively.

To obtain the k-lcsO(C,D) we build the product of the canonical models
(IC,O, dC) and (ID,O, dD) and then take the k-characteristic concept of this
product model.

Lemma 2. Let k ∈ N.

1. Xk(IC,O × ID,O, (dC , dD)) ∈ csO(C,D).

2. Let E ∈ csO(C,D) with rd(E) ≤ k.
It holds that Xk(IC,O × ID,O, (dC , dD)) vO E.

In the proof we only need to refer to the canonical models and its properties
given in Lemma 1, thus the proof is a straightforward variant of the one given
in [14].

In the following we use Xk(IC,O ×ID,O, (dC , dD)) as a representation of the
k-lcsO(C,D). It is implied by Lemma 2 that the set of k-characteristic concepts
of the product model (IC,O×ID,O, (dC , dD)) for all k is the set of lcs-candidates
for the lcsO(C,D), which can be stated as follows.

Corollary 1. The lcsO(C,D) exists iff there exists a k ∈ N such that for all
` ∈ N: k-lcsO(C,D) vO `-lcsO(C,D).

Obviously, this condition does not yield a decision procedure for the problem
whether the k-lcsO(C,D) is the lcs, since subsumption cannot be checked for
infinitely many ` in finite time.

Next, we address step 2 and show a condition on the common subsumers
that decides whether a common subsumer is least or not. The main idea is that
the product model (IC,O × ID,O, (dC , dD)) captures all commonalities of the
input concepts C and D. Thus we need to compare the canonical models of the
common subsumers and the product model by using simulation-equivalence '.

Lemma 3. Let E be a concept. E ≡O lcsO(C,D) iff
(IC,O × ID,O, (dC , dD)) ' (IE,O, dE).



Proof sketch. For any F ∈ csO(C,D) it holds by Lemma 1, Claim 3 that
(IF,O, dF ) is simulated by (IC,O, dC) and by (ID,O, dD) and therefore also by
(IC,O × ID,O, (dC , dD)).

Assume that (IE,O, dE) is simulation-equivalent to the product model. We
need to show that E ≡O lcsO(C,D). By transitivity of . it is implied that
(IF,O, dF ) . (IE,O, dE) and E vO F by Lemma 1. Therefore E ≡O lcsO(C,D).

For the other direction assume E ≡O lcsO(C,D). It has to be shown that
(IE,O, dE) simulates the product model. Let J(dC ,dD) be the tree unraveling of
the product model. Since E is more specific than the k-characteristic concepts
of the product model for all k (by Corollary 1), (IE,O, dE) simulates the sub-
tree J k(dC ,dD) of J(dC ,dD) limited to elements up to depth k, for all k. For each

k we consider the maximal simulation from J k(dC ,dD) to (IE,O, dE). Note that

((dC , dD), dE) is contained in any of these simulations. Let σ be an element of
∆J(dC,dD) at an arbitrary depth `. We show how to determine the elements of
∆IE,O , that simulate this fixed element σ. Let Sn(σ) be the maximal set of ele-
ments from ∆IE,O that simulate σ in each of the trees J n(dC ,dD) with n ≥ `. We

can observe that the infinite sequence (S`+i(σ))i=0,1,2,... is decreasing (w.r.t. ⊇).
Therefore at a certain depth we reach a fixpoint set. This fixpoint set exists for
any σ. It can be shown that the union of all these fixpoint sets yields a simulation
from the product model to (IE,O, dE).

By the use of Lemma 3 it can be verified whether a given common subsumer is
the least one or not, which we illustrate by an example.

Example 1. Consider the following TBox

T1 = {C v E u ∃r.C,
D v E u ∃r.D,
E v ∃s.E}

with O1 = (T1, ∅) and now the following extended ontology

O2 = (T1, {s ◦ s v r})
In Figure 1 we can see that

E u ∃s.E ∈ csO1
(C,D),

but this concept is not the lcs of C and D, because its canonical model cannot
simulate the product model (IC,O1

×ID,O1
, (dC , dD)). The concept E, however,

is the lcs of C and D w.r.t. O2. We have (IC,O2
×ID,O2

, (dC , dD)) . (IE,O2
, dE)

since (dC , dD) and (dE , dE) are simulated by dE .

The characterization of the existence of the lcs given in Corollary 1 can be
reformulated using Lemma 3.

Corollary 2. The lcsO(C,D) exists iff there exists a k such that the canonical
model of Xk(IC,O ×ID,O, (dC , dD)) w.r.t. O simulates (IC,O ×ID,O, (dC , dD)).

This corollary still doesn’t yield a decision procedure for the existence problem,
since the depth k is still unrestricted. Such a restriction will be developed in the
next section.



(dC , dD)
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× ID,O1
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× ID,O2 IE,O2

IEu∃s.E,O1

Fig. 1: Product of canonical models of O1 and O2

3.2 A Polynomial Upper Bound on the Role-depth of the lcs

In this section we show that, if the lcs exists, its role-depth is bounded by the
size of the product model. First, consider again the ontology O2 from Example 1,
where E vO2

∃r.E holds, which results in an r-loop in the product model through
the element (dE , dE) with the same name appearing in both components. Fur-
thermore, the cycles in the product model involving the roles r and s are exactly
those captured by the canonical model IE,O2

. Therefore E ≡O2
lcsO2

(C,D). On
this observation we build our general method.

We call elements (dF , dF ′) ∈ ∆IC,O×ID,O synchronous if F = F ′ and asyn-
chronous otherwise. The structure of (IC,O × ID,O, (dC , dD)) can now be sim-
plified by considering only synchronous successors of synchronous elements.

In order to find a number k, such that the product model is simulated by the
canonical model of K = Xk(IC,O × ID,O, (dC , dD)), we first represent the model
(IK,O, dK) as a subtree of the tree unraveling of the product model J(dC ,dD)

with root (dC , dD). We construct this representation by extending the subtree
J k(dC ,dD) by new tree models at depth k. We need to ensure that the resulting

interpretation, denoted by Ĵ k(dC ,dD), is a model ofO, that is simulation-equivalent

to (IK,O, dK). The elements σ ∈ ∆J
k
(dC,dD) with |σ| = k that we extend and the

corresponding trees we append to them are selected as follows: Let M be a

conjunction of concept names and ∃s.F ∈ sub(O). If σ ∈ MJ
k
(dC,dD) and M vO

∃r.F , then we append the tree unraveling of the canonical model I∃r.F,O. Note
that the role names s and r can be different due to the presence of RIAs in O.
Furthermore, we consider elements that have a tail that is a synchronous element.
If tail(σ) = (dF , dF ), then F is called tail concept of σ. To select the elements
with a synchronous tail, that we extend by the canonical model of their tail
concept, we use embeddings of J k(dC ,dD) into (IK,O, dK). Let H = {Z1, ..., Zn}
be the set of all functional simulations Zi from J k(dC ,dD) to (IK,O, dK) with

Zi((dC , dD)) = dK . We say that σ with tail concept F is matched by Zi if

Zi(σ) ∈ F IK,O . The set of elements σ ∈ ∆J
k
(dC,dD) with |σ| = k, that are



matched by a functional simulation Zi is called matching set, denoted byM(Zi).
Now consider the set M(H) := {M(Z1), ...,M(Zn)}. If σ is contained in all
maximal matching sets from M(H), then we extend σ by the tree unraveling
of the canonical model of its tail concept w.r.t. O. Intuitively, this condition
corresponds to a minimization of changes which is required since the canonical
model we want to obtain is minimal w.r.t. .. We can show that the resulting

interpretation Ĵ k(dC ,dD) has the desired properties.

Lemma 4. Let K = Xk(IC,O × ID,O, (dC , dD)). Ĵ k(dC ,dD) is a model of O and

Ĵ k(dC ,dD) ' (IK,O, dK).

Having this representation of the canonical model of the k-lcsO(C,D) at hand,
we first show a sufficient condition for the existence of the lcs.

Corollary 3. If all cycles in (IC,O × ID,O, (dC , dD)), that are reachable from
(dC , dD) consist of synchronous elements, then the lcsO(C,D) exists.

Proof sketch. There exists an ` ∈ N such that all paths in the tree unraveling
J(dC ,dD) of (IC,O × ID,O, (dC , dD)) starting in (dC , dD) have a maximal asyn-
chronous prefix up to length `, i.e., if there exists an element at depth ≥ `+ 1,
then it is a synchronous element. Consider the number

m := max({rd(F ) | F ∈ sub(O) ∪ {C,D}}).

We unravel (IC,O × ID,O, (dC , dD)) up to depth ` + m + 1 such that we get

J `+m+1
(dC ,dD). Now it is ensured that the corresponding model Ĵ `+m+1

(dC ,dD) contains

all paths with a maximal asynchronous prefix up to length `. It is implied
that Ĵ `+m+1

(dC ,dD) = J(dC ,dD). From Lemma 4 and from Corollary 2 it follows that

X`+m+1(IC,O × ID,O, (dC , dD)) is the lcs.

As seen in Example 1 for O2, this is not a necessary condition for the existence
of the lcs. Since although the lcs of C and D exists w.r.t. O2, the product model
has also a cycle involving the asynchronous element (dC , dD).

Another consequence of Lemma 4 is, that if the product model (IC,O ×
ID,O, (dC , dD)) has only asynchronous cycles reachable from (dC , dD), then the

lcsO(C,D) does not exist. Since in this case J(dC ,dD) is infinite but Ĵ k(dC ,dD) is

finite for all k ∈ N, a simulation from (IC,O × ID,O, (dC , dD)) to Ĵ k(dC ,dD) never
exists for all k.

The interesting case is where there are both asynchronous and synchronous
cycles reachable from (dC , dD) in the product model. In this case we choose a k
that is large enough and then check whether the corresponding canonical model
of Xk(IC,O × ID,O, (dC , dD)) w.r.t. O simulates the product model.

We show in the next lemma that the role-depth of the lcsO(C,D), if it exists,
can be bounded by a polynomial, that is quadratic in the size of the product
model.

Lemma 5. Let m := max({rd(F ) | F ∈ sub(O)∪{C,D}}) and n := |∆IC,O×ID,O |.
If lcsO(C,D) exists then (IC,O × ID,O, (dC , dD)) . Ĵ n

2+m+1
(dC ,dD) .
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Fig. 2: simulation chain of p and p`

Proof sketch. Assume lcsO(C,D) exists. From Corollary 2 and Lemma 4 it follows
that there exists a number ` such that

(IC,O × ID,O, (dC , dD)) . Ĵ `(dC ,dD). (1)

Every path in Ĵ `(dC ,dD) has a maximal asynchronous prefix of length ≤ `. From

depth ` + 1 on there are only synchronous elements in the tree Ĵ `(dC ,dD). From

(1) it follows that every path p in (IC,O×ID,O, (dC , dD)) starting in (dC , dD), is

simulated by a corresponding path p` in Ĵ `(dC ,dD) also starting in (dC , dD). The
simulation chain of p and p` is depicted in Figure 2. The idea of a simulation
chain is to use the simulating path p` to construct a simulating path in Ĵ `(dC ,dD)

(also starting in (dC , dD)) with a maximal asynchronous prefix of length ≤ n2,
where n2 is the number of pairs of elements from∆IC,O×ID,O . Intuitively, if p` has
a maximal asynchronous prefix that is longer than n2, then there must be pairs
in the simulation chain that occur more than once. These are used to construct
a simulating path with a shorter maximal asynchronous prefix step-wise. After
a finite number of steps the result is a simulating path, such that all pairs
consisting of asynchronous elements in the corresponding simulation chain are
pairwise distinct. Therefore we need only asynchronous elements from Ĵ `(dC ,dD)

up to depth n2 to simulate the product model. Then we add m + 1 to n2 to

ensure that Ĵ n
2+m+1

(dC ,dD) contains all paths from J(dC ,dD) starting in (dC , dD), that

have a maximal asynchronous prefix of length ≤ n2. As argued above Ĵ n
2+m+1

(dC ,dD)

simulates (IC,O × ID,O, (dC , dD)).

Using Lemma 3 and Lemma 5 we can now show the main result of this paper.

Theorem 1. Let C,D be concepts and O an EL+-ontology. It is decidable in
polynomial time whether the lcsO(C,D) exists. If the lcsO(C,D) exists then it
can be computed in polynomial time.

Proof. First we compute the bound k as given in Lemma 5 and then the k-
characteristic concept K of (IC,O × ID,O, (dC , dD)). The canonical model of K
can be build according to Definition 2 in polynomial time [5]. Next we check
whether (IC,O×ID,O, (dC , dD)) . (IK,O, dK) holds, which can be done in poly-
nomial time. If yes, K is the lcs by Lemma 3 and if no, the lcs doesn’t exist by
Lemma 5.



The results from this section can be easily generalized to the lcs of an arbitrary
set of concepts M = {C1, ..., Cm} w.r.t. an ontology O. But in this case the size
of the lcs is already exponential w.r.t. an empty TBox [2]. In this general case
we have to take the product model

(IC1,O × · · · × ICm,O, (dC1
, · · · , dCm

)),

whose size is exponential in the size of M and O, as input for the methods
introduced in this section. Then the same steps as for the binary version can be
applied.

4 Conclusions and Future Work

In this paper we have studied the conditions for the existence of the lcs, if
computed w.r.t. EL+-ontologies. In this setting the lcs doesn’t need to exist. We
showed that the existence problem of the lcs of two concepts is decidable in
polynomial time. Furthermore, we showed that the role-depth of the lcs can be
bounded by a polynomial. This upper bound k can be used to compute the lcs, if
it exists. Otherwise the computed concept can still serve as an approximation [8].

Future work on the practical side includes to improve the described procedure
in order to obtain a practical algorithm such that an appropriate implementa-
tion can be integrated into existing tools [7] for computing generalizations. On
the theoretical side, we would like extend the results towards the computation
of most specific concepts of individuals w.r.t. to ontologies consisting of general
TBoxes and cyclic ABoxes. Furthermore, we will also consider these generaliza-
tion inferences w.r.t. ontologies formulated in more expressive Horn-DLs than
EL+.
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