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Abstract. We present technologies that underpin the OBDA system
Ontop and take full advantage of storing data in relational databases. We
discuss the theoretical foundations of Ontop, including the tree-witness
query rewriting, T -mappings and optimisations based on database in-
tegrity constraints and SQL features.

1 Introduction

Ontology-based data access (OBDA) [18] is regarded as a key ingredient for the
new generation of information systems. In the OBDA paradigm, an ontology de-
fines a high-level global schema and provides a vocabulary for user queries, thus
isolating the user from the details of the data source structure (which can be
a relational database, a triple store, a datalog engine, etc.). The OBDA system
transforms user queries into the vocabulary of the data and then delegates the
actual query evaluation to the data sources. In this paper, we concentrate on
OBDA for ontologies formulated in OWL 2 QL, a profile of OWL 2 specifically
tailored to support rewriting of conjunctive queries (CQs) over ontologies into
first-order (FO) queries. A standard architecture of such an OBDA system over
relational data sources can be represented as follows:
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The user is given an OWL 2 QL TBox T and can formulate CQs q(x) in the
signature of T . The system rewrites q and T into an FO-query q′(x), called a
rewriting of q and T , such that (T ,A) |= q(a) iff A |= q′(a), for any ABox
A and any tuple a of individuals in A. A number of different rewriting tech-
niques have been proposed and implemented for OWL 2 QL (PerfectRef [18],
Presto/Prexto [24, 23], Rapid [4], the tree-witness rewriting [11]) and its exten-
sions ([12], Nyaya [7], Requiem/Blackout [16, 17], Clipper [5]).



The rewriting q′ is formulated in the signature of T and has to be further
transformed into the vocabulary of the data source D before being evaluated. For
instance, q′ can be unfolded into an SQL query by means of a GAV mappingM
relating the signature of T to the vocabulary of D. Strangely enough, mappings
and unfoldings have largely been ignored by query rewriting algorithms (with
Mastro-I [18] being an exception), partly because the data was assumed to be
given as an ABox (say, as a universal table in a database or as a triple store).
We consider the query transformation process as consisting of two steps—query
rewriting and unfolding—and argue that this brings practical benefits (even in
the case of seemingly trivial mappings for universal tables or triple stores).

The performance of first OBDA systems based on the architecture above was
marred by large rewritings that could not be processed by RDBMSs, which led
the OBDA community to intensive investigations of rewriting techniques and
optimisations. There are 3 main reasons for large CQ rewritings and unfoldings:

(E) Sub-queries of q with existentially quantified variables can be folded in
many different ways to match the canonical models of possible (T ,A), all of
which must be reflected in the rewriting q′.

(H) The concepts and roles for atoms in q can have many sub-concepts and
sub-roles according to T , which also have to be included in the rewriting q′.

(M) The mappingM can have multiple definitions of the ontology terms, which
may result in an exponential blowup when q′ is unfolded into a (most suitable
for RDBMSs) union of Select-Project-Join queries.

In fact, most of the proposed rewriting techniques try to tame (E): various op-
timisations are used in unification strategies to reduce the size of UCQs, with
conjunctive query containment as the last resort. Presto [24] and the tree-witness
rewriting [11] use non-recursive datalog to deal with (H); this, however, is of
little help if a further transformation to a UCQ is required. The combined ap-
proach [13, 15] constructs finite representations of (in general) infinite canonical
models of (T ,A) thereby totally removing (H). It also solves (E) for TBoxes
without role inclusions; otherwise, rewritings can still be of exponential size, or
the filtering procedure [15] may have to run exponentially many times.

In theory, (E) turns out to be incurable under the architecture above: there
exist CQs and OWL 2 QL TBoxes for which any FO- (or non-recursive datalog)
rewriting results in a superpolynomial (or exponential) blowup [10], which hap-
pens independently of the contribution of (H) and (M); the polynomial rewriting
of [8] hides this blowup behind the existential quantification over special con-
stants. Fortunately, it seems that only (artificially) complex CQs and TBoxes
trigger issues with (E). For real-world CQs and ontologies, the number of fold-
ings in (E) appears to be very small and can be efficiently dealt with by suitable
rewritings [11].

In this paper, we attack both (H) and (M) at the same time using two key
observations. First, the schema and integrity constraints (dependencies), Σ, of
the data source D together with the mapping M often provide valuable infor-
mation about the class of possible ABoxes over which the user CQ is rewritten.
(Note that these ABoxes are virtual representations of D and do not have to



be materialised.) For example, if we know that all our virtual ABoxes A are
∃-complete with respect to T (that is, contain witnesses for all concepts ∃R in
T ) then we do not face (E); if all A are H-complete (that is, B(a) ∈ A whenever
A(a) ∈ A and T |= A v B, and similarly for roles) then (H) disappears. Second,
we can make the virtual ABoxes H-complete by taking the composition of T
and M as a new mapping. This composition, called a T -mapping [20], can be
simplified with the help of Σ and the features of the target query language before
being used in the unfolding. As the simplifications use Σ, they preserve correct
answers only over database instances satisfying Σ. (Even if the mappings are
trivial and the ABox comes from a universal table or a triple store, it often has
a certain structure and satisfies certain constraints, which could be taken into
account to make query answering more efficient [9]).

These observations underpin the system Ontop (ontop.inf.unibz.it), which
is implemented at the Free University of Bozen-Bolzano and available as a
Protégé plugin, a SPARQL endpoint and OWLAPI and Sesame libraries. The
process of query rewriting and unfolding in Ontop with all optimisations is shown
in the picture below:
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This architecture, which is our main contribution, will be discussed in detail in
the remainder of the paper. Here we only emphasise the key ingredients:

Ê the tree-witness rewriting qtw assumes the virtual ABoxes to be H-complete;
it separates the topology of q from the taxonomy defined by T , is fast in
practice and produces short UCQs;

Ë the T -mapping combines the system mapping M with the taxonomy of T
to ensure H-completeness of virtual ABoxes;

Ì the T -mapping is simplified using the Semantic Query Optimisation (SQO)
technique and SQL features; the T -mapping is constructed and optimised
for the given T and Σ only once, and is used for unfolding all rewritings qtw;

Í the unfolding algorithm uses SQO to produce small and efficient SQL queries.

Our experimental results [22, 21] (also www.dcs.bbk.ac.uk/~roman/tw-rewriting)
show that when applied to real-world queries, ontologies and databases, Ontop
automatically produces rewritings of reasonably high quality and its performance
is comparable to that of traditional RDBMSs with hand-crafted queries.



2 OWL2QL and Databases

The language of OWL 2 QL contains individual names ai, concept names Ai,
and role names Pi (i ≥ 1). Roles R and basic concepts B are defined by the
grammar:

R ::= Pi | P−i , B ::= ⊥ | Ai | ∃R.

A TBox, T , is a finite set of inclusions of the form

B1 v B2, B1 v ∃R.B2, B1 uB2 v ⊥, R1 v R2, R1 uR2 v ⊥.

An ABox, A, is a finite set of atoms of the form Ak(ai) or Pk(ai, aj). The
semantics for OWL 2 QL is defined in the usual way based on interpretations
I = (∆I , ·I) [2]. The set of individual names in A is denoted by ind(A). Although
ABoxes do not contain inverse roles, we write P−(a, b) ∈ A if P (b, a) ∈ A; also,
we write ∃R(a) ∈ A if R(a, b) ∈ A, for some b. We denote by vT the subsumption
relation induced by T and write S1 vT S2 if T |= S1 v S2, where S1 and S2

both are either basic concepts or roles.
A conjunctive query (CQ) q(x) is a first-order formula ∃y ϕ(x,y), where ϕ is

a conjunction of atoms of the form Ak(t1) or Pk(t1, t2), and each ti is a term (an
individual or a variable in x or y). We often use the datalog notation for CQs,
writing q(x)← ϕ(x,y) (without the existential quantifiers), and call q the head
and ϕ the body of the rule. The variables in x are called answer variables. A tuple
a ⊆ ind(A) is a certain answer to q(x) over (T ,A) if I |= q(a) for all models
I of (T ,A); in this case we write (T ,A) |= q(a). We sometimes identify q with
the set of its atoms, and set R(x, y) = P (x, y) if R = P , and R(x, y) = P (y, x)
if R = P−.

As explained in the introduction, we assume that the data comes from a rela-
tional database rather than an ABox. We view databases [1] as triples (R, Σ, I),
where R is a database schema, containing predicate symbols (with their arity)
for both stored database relations and views (together with their definitions in
terms of stored relations), Σ is a set of integrity constraints over R (in the form of
inclusion and functional dependencies), and I is a data instance over R (satisfy-
ing Σ). The vocabularies of R and T are linked together by means of mappings
given by a domain expert or extracted (semi-)automatically. A mapping, M,
from R to T is a set of (GAV) rules of the form

S(x)← ϕ(x, z),

where S is a concept name or a role in T and ϕ(x, z) a conjunction of atoms with
stored relations and views from R and a filter, that is, a Boolean combination
of built-in predicates such as = and <. (Note that, by including views in the
schema, we can express any SQL query in mappings.) Given a mappingM from
R to T , the ground atoms S(a), for S(x)← ϕ(x, z) in M and I |= ∃z ϕ(a, z),
comprise the ABox, AI,M, which is called the virtual ABox for T and M over
I. We can now define certain answers to a CQ q over a TBox T and a database
(R, Σ, I) linked by a mapping M as certain answers to q over (T ,AI,M).



3 The Tree-Witness Rewriting over H-complete ABoxes

In the rewriting used in Ontop, we assume that the ABoxes A are H-complete
with respect to T in the sense that S2(a) ∈ A whenever S1(a) ∈ A and S1 vT S2.
The issue of completing ABoxes will be discussed in Sec. 4.

Let q(x) = ∃y ϕ(x,y). As is well-known, for any ABox A, there is a canonical
model CT ,A of (T ,A) such that, for all a ⊆ ind(A), we have (T ,A) |= q(a) iff
CT ,A |= q(a) iff there is a homomorphism h : q(a)→ CT ,A. The domain of CT ,A
consists of two parts: ind(A) and the witnesses introduced by the ∃ quantifiers
in T . We assume that every a ∈ ind(A) with B(a) ∈ A roots a (possibly infinite)
subtree CBT (a) of CT ,A, which may intersect another such subtree only on their
common root (each CBT (a) is isomorphic over the signature of T to the canonical
model of (T ∪ {A v B}, {A(a)}), for a fresh concept name A).

a1 : B1 a2 : B1, B2 a3

CB1
T (a1) CB1

T (a2) CB2
T (a2)

P1, P
−
2 P2

Each homomorphism h : q(a) → CT ,A splits q into a sub-query mapped by
h to ind(A) and a subquery mapped to the trees CBT (a), for B(a) ∈ A. We can
think of a rewriting of q and T as listing possible splits of q into such subqueries.
We first characterise the subqueries of q that can be mapped to subtrees CBT (a).
Let t = (tr, ti) be a pair of disjoint sets of terms in q such that ti 6= ∅ and ti ⊆ y.
Consider the subset qt of q comprising atoms with terms in tr∪ti but not entirely
in tr:

qt =
{
S(z) ∈ q | z ⊆ tr ∪ ti and z 6⊆ tr

}
.

We say that t is generated by a basic concept B if there is a homomorphism
h : qt → CBT (a), for some a, such that h−1(a) = tr. We call t a tree witness for q
and T if t is generated by some B, qt is connected and contains all atoms of q
with at least one variable from ti. (The last condition reflects the fact that if a
homomorphism from q(a) sends a variable y of an atom P (y, t) ∈ q to a non-
root point of a subtree CBT (a) of CT ,A then the other term t must be sent to the
same subtree CBT (a).) The terms in tr (if any) are called roots and the variables
in ti the interior of t. Assuming that tr = {t1, . . . , tk}, k ≥ 0, we associate with
a tree witness t a k-ary predicate twt defined by the following set of rules:

twt(x, . . . , x)← B(x), if t is generated by B, (1)

where B(x) = A(x) if B = A, B(x) = P (x, ) if B = ∃P , B(x) = P ( , x) if
B = ∃P−, and denotes an anonymous existentially quantified variable (since
the ABox is H-complete, we take only those basic concepts B generating t that
are maximal with respect to vT ). If tr 6= ∅ then (1) makes all the arguments
of twt equal, thus complying with h−1(a) = tr. Otherwise, tr = ∅ and so, twt is
a propositional variable and x is existentially quantified in the body of (1). As
the arguments of twt play identical roles, we can write twt(tr) without specifying
any order on the set tr.



Tree witnesses t and t′ are consistent if they intersect only on their common
roots: (tr ∪ ti)∩ (t′r ∪ t′i) ⊆ tr ∩ t′r. Each set Θ of pairwise consistent tree witnesses
determines a subquery qΘ of q that comprises all atoms of qt, for t ∈ Θ. The
subquery qΘ is to be mapped to the CBT (a), whereas the remainder q \ qΘ,
obtained by removing the atoms of qΘ from q, is mapped to ind(A). Thus, the
tree-witness rewriting qtw is defined by the rules for the twt together with the
following:

qtw(x)← (q \ qΘ) ∧
∧
t∈Θ

twt(tr), for consistent Θ. (2)

Theorem 1. For any H-complete (with respect to T ) ABox A and a ⊆ ind(A),
we have CT ,A |= q(a) iff A |= qtw(a).

As defined, the rewriting qtw is a non-recursive datalog query. In what follows,
however, we regard qtw as a UCQ obtained by replacing occurrences of the twt

by their definitions. As an example, consider an ontology T with the axioms

RA v ∃worksOn.Project, worksOn− v involves,

Project v ∃isManagedBy.Prof, isManagedBy v involves

and the CQ asking to find those who work with professors:

q(x)← worksOn(x, y) ∧ involves(y, z) ∧ Prof(z).

CRA
T (a) looks as follows:

a

RA Project

u
Prof

vworksOn

involves−

isManagedBy

involves

We have two tree witnesses generated by RA:

t1 = ({x}, {y, z}), for h(x) = a, h(y) = u, h(z) = v,

t2 = ({x, z}, {y}), for h(x) = h(z) = a, h(y) = u,

and one tree witness t3 = ({y}, {z}) generated by Project. Thus, there are 4 sets
of consistent tree witnesses: ∅, {t1}, {t2}, {t3}, which give the following rewriting:

qtw(x)← worksOn(x, y), involves(y, z),Prof(z), (3)

qtw(x)← RA(x), (4)

qtw(x)← RA(x),Prof(x), (5)

qtw(x)← worksOn(x, y),Project(y). (6)

The size of the tree-witness rewriting depends on the number of consistent
sets of tree witnesses for q and T . There exist CQs and TBoxes whose shortest
rewritings are exponential [10]. Observe, however, that to generate many tree
witnesses, the CQ q must have many subqueries that can be homomorphically
mapped to some CBT (a), which requires both q and CBT (a) to be quite sophisti-
cated, with q ‘mimicking’ parts of CBT (a) as in the example above. To the best
of our knowledge, this does not occurs in real-world CQs and ontologies used for



OBDA. More often than not, they do not generate tree witnesses at all. It is also
known [11, Theorem 21] that, if the CQ and ontology do not contain fragments
as in the (artificial) example above, then the number of consistent sets of tree
witnesses is polynomial. As a result, the UCQ rewriting qtw is typically small
in practice, and so further optimisations can be performed quickly. There are
two ways of optimising this UCQ. First, we can use a subsumption algorithm
to remove redundant CQs from the union: for example, (4) subsumes (5), which
can therefore be safely removed. Second, we can reduce the size of individual
CQs in the union using the following observation: for any CQ q (viewed as a set
of atoms),

q ≡c q \ {A(x)}, if A′(x) ∈ q and A′ vT A and A′ 6= A,

q ≡c q \ {A(x)}, if R(x, y) ∈ q and ∃R vT A,
q ≡c q \ {P (x, y)}, if R(x, y) ∈ q and R vT P and R 6= P,

where ≡c reads ‘has the same certain answers over H-complete ABoxes.’ Sur-
prisingly, such a simple optimisation, especially for ∃R vT A, makes rewritings
substantially shorter [24, 7].

4 From Rewritings over ABoxes to Database Queries

The rewriting qtw works only for H-complete ABoxes. Given a mappingM from
the database schema R to T , one can define H-complete (with respect to T )
ABoxes by taking the composition MT of M and the inclusions in T :

A(x)← ϕ(x, z) if A′(x)← ϕ(x, z) ∈M and A′ vT A,
A(x0)← ϕ(x0, x1, z) if R(x0, x1)← ϕ(x0, x1, z) ∈M and ∃R vT A,

P (x0, x1)← ϕ(x0, x1, z), if R(x0, x1)← ϕ(x0, x1, z) ∈M and R vT P.

(Recall that we identify P−(x1, x0) with P (x0, x1), in particular, in the heads
of the mapping rules.) Clearly, for any database instance I, the virtual ABox
AI,MT is H-complete with respect to T . Thus, to compute answers to q over T
and a virtual ABox AI,M, it suffices to evaluate the tree-witness rewriting qtw

over AI,MT :

Theorem 2. For any data instance I and any tuple a ⊆ ind(AI,M), we have
(T ,AI,M) |= q(a) iff AI,MT |= qtw(a).

Most OBDA systems first construct rewritings over arbitrary ABoxes and
only then unfold them, using mappings, into unions of Select-Project-Join
queries, which are evaluated by an RDBMS. By Theorem 2, the same result can
be obtained by unfolding rewritings over H-complete ABoxes with the help of
the composition MT . However, in practice the resulting SQL query often turns
out to be too large [19].

In Ontop, we also start with MT . But before applying it to unfold qtw, we
simplify and reduce the size of MT using the database integrity constraints Σ.



A mapping M from R to T is called a T -mapping over Σ if the ABox AI,M is
H-complete with respect to T , for any data instance I satisfying Σ. (The com-
position MT is a T -mapping over any Σ.) Ontop transforms MT to a simpler
T -mapping using Σ and SQL features such as disjunctions in filter conditions.

To illustrate, we take a simplified IMDb1, whose schema contains relations
title[m, t, y] with information about movies (ID, title, production year), and
castinfo[p,m, r] with information about movie casts (person ID, movie ID, per-
son role), and an ontology MO,2 describing the application domain in terms of,
for example, concepts mo:Movie and mo:Person, and roles mo:cast and mo:year:

mo:Movie ≡ ∃mo:title, mo:Movie v ∃mo:year,

mo:Movie ≡ ∃mo:cast, ∃mo:cast− v mo:Person.

A mapping that relates the ontology terms to the database schema contains, for
example, the following rules:

mo:Movie(m)← title(m, t, y), mo:cast(m, p)← castinfo(p,m, r) (7)

mo:title(m, t)← title(m, t, y), mo:Person(p)← castinfo(p,m, r) (8)

mo:year(m, y)← title(m, t, y). (9)

4.1 Integrity Constraints for T -mapping Optimisation

Suppose a T -mapping M over Σ contains two rules S(x) ← ψi(x, z), i = 1, 2.
If one of these rules is more specific than the other, then it can be removed
without any change in the virtual ABoxes produced from database instances. To
discover such ‘more specific’ rules, we run the standard query containment check
(see, e.g., [1]) taking account of the inclusion dependencies ΣIND ⊆ Σ, that is,
integrity constraints of the form

∀x
(
∃y1R1(z1)→ ∃y2R2(z2)

)
,

where each Ri is a database relation and each zi contains all the variables from
x and yi, possibly in a different order.

(opt1) If ΣIND |= ∀x
(
∃z ψ1(x, z)→ ∃z ψ2(x, z)

)
,

then M\ {S(x)← ψ1(x, z)} is a T -mapping over Σ.

For example, since ∃mo:cast vT mo:Movie, the composition MMO of the map-
ping M defined by (7)–(9) and MO contains the following rules for mo:Movie:

mo:Movie(m)← title(m, t, y),

mo:Movie(m)← castinfo(p,m, r).

By (opt1), the latter rule is redundant because IMDb contains the foreign key
(inclusion dependency)

∀m
(
∃p, r castinfo(p,m, r)→ ∃t, y title(m, t, y)

)
.

1 http://www.imdb.com/interfaces
2 http://www.movieontology.org



The T -mapping optimisation (opt1) turns out to be very effective in practice.
Its power comes from the fact that Σ describes integrity constraints of database
instances, while T describes concepts and roles defined by the mapping over the
same data. Essentially, both are theories about the same entities but in different
languages. Thus, it is no wonder that many inclusions in T are consequences of
Σ, which allows us to drastically reduce the size of T -mappings.

4.2 Disjunctions in SQL

Another efficient way to reduce the size of a T -mapping is to identify rules whose
bodies are equivalent up to filters with respect to constant values. More precisely,
let a T -mappingM contain two rules S(x)← ψ(x, z), ϕi(x, z), for i = 1, 2, such
that ϕ1 and ϕ2 are Boolean conditions constructed from built-in predicates (such
as = and <).

(opt2) The result of replacing S(x)← ψ(x, z), ϕi(x, z), for i = 1, 2, in M
by S(x)← ψ(x, z), (ϕ1(x, z) ∨ ϕ2(x, z)) is a T -mapping over Σ.

This optimisation deals with the rules introduced due to the so-called type (dis-
criminating) attributes [6] in database schemas. For example, the mapping M
for IMDb and MO contains six rules for sub-concepts of mo:Person:

mo:Actor(p)← castinfo(c, p,m, r), (r = 1),
· · ·

mo:Editor(p)← castinfo(c, p,m, r), (r = 6).

The composition MMO contains six rules for mo:Person that differ only in the
last condition (r = k), for k = 1, . . . , 6, and (opt2) reduces them to a single
one:

mo:Person(p)← castinfo(c, p,m, r),
(
(r = 1) ∨ · · · ∨ (r = 6)

)
.

Such disjunctions lend themselves to efficient query evaluation by RDBMSs.

4.3 Semantic Index: T -mappings over Materialised ABoxes

In addition to working with proper relational data sources, Ontop also supports
ABox storage in the form of structureless universal tables: a binary relation
CA[id, concept-id] and a ternary relation RA[id1, id2, role-id] represent concept
and role assertions. The universal tables give rise to trivial mappings and Ontop
implements a technique, the semantic index [20], that takes advantage of SQL
features in T -mappings for this scenario. The key observation is that since the
IDs in the universal tables CA and RA can be chosen by the system, each
concept and role in the TBox T can be assigned a numeric index and a set of
numeric intervals in such a way that the resulting T -mapping contains simple
SQL queries with interval filter conditions; cf. (opt2). For example, in IMDb,
we have

mo:Artist v mo:Person, mo:Director v mo:Person, mo:Actor v mo:Artist



so we can choose index 1 and interval [1,1] for mo:Actor, 2 and [1,2] for mo:Artist,
3 and [3,3] for mo:Director and 6 and [1,6] for mo:Person. This will generate a
T -mapping with, for instance,

mo:Person(p)← CA(p, concept-id), (1 ≤ concept-id ≤ 6),

mo:Artist(p)← CA(p, concept-id), (1 ≤ concept-id ≤ 2).

So, by choosing appropriate concept and role IDs, we, on the one hand, effectively
construct H-complete ABoxes without the expensive forward chaining procedure
(and the need to store large amounts of derived assertions). On the other hand,
the semantic index T -mappings are based on range expressions, which can be
evaluated efficiently by RDBMSs using standard B-Tree indexes [6].

4.4 Unfolding with Semantic Query Optimisation (SQO)

To execute the rewriting qtw over an instance data, one can simply extend qtw

with the definitions of ontology predicates provided by a T -mapping. This would
result in an SQL query with subqueries (for the mapping rules). In theory, it can
be passed directly to an RDMBS. It is, however, known that RDBMSs are poor
at estimating the cost and planning queries with complex subqueries. Instead,
Ontop unfolds rewritings and T -mappings into unions of Select-Project-
Join queries, which are known to be optimal for execution by RDBMSs. The
unfolding procedure [18] applies SLD-resolution to qtw and the T -mapping, and
returns those rules whose bodies contain only database atoms (cf. partial evalu-
ation [14]).

Ontop applies SQO [3] to rules obtained at the intermediate steps of un-
folding. In particular, this eliminates redundant self-Join operations caused by
reification of database relations by means of concepts and roles. Recall [1] that,
functional dependencies are integrity constraints of the form

∀x ∀u1∀u2
(
∃yR(z) ∧ ∃yR(z[u1/u2])→ (u1 = u2)

)
, (10)

where R is a database relation, z contains u1 and all the variables in x, y, and
z[u1/u2] is the result of replacing u1 in z with u2; x is called the determinant
of the dependency.

(opt3) If the determinants of a functional dependency (10) coincide in atoms
R(z1) and R(z2) then any rule of the form q(x)← ϕ(x,y), R(z1), R(z2)
can be equivalently replaced by the result of removing duplicate atoms from
the body of q(x)← ϕ(x,y), R(z1), R(z2[u1/u2]).

Consider, for example, the CQ

q(t, y)← mo:Movie(m),mo:title(m, t),mo:year(m, y), (y > 2010)

It has no tree witnesses, and so qtw = q. By straightforwardly applying the
unfolding to qtw and the T -mappingM defined by (7)–(9), we obtain the query

q′tw(t, y)← title(m, t0, y0), title(m, t, y1), title(m, t2, y), (y > 2010),



which requires two (potentially) expensive Join operations. However, by using
the primary key m of title:

∀m ∀t1∀t2
(
∃y title(m, t1, y) ∧ ∃y title(m, t2, y)→ (t1 = t2)

)
,

∀m ∀y1∀y2
(
∃t title(m, t, y1) ∧ ∃t title(m, t, y2)→ (y1 = y2)

)
(a functional dependency with determinant m), we reduce two Join operations
in the first three atoms of q′tw to a single atom title(m, t, y):

q′′tw(t, y)← title(m, t, y), (y > 2010).

Note that these two Join operations were introduced to reconstruct the ternary
relation from its reification by means of the roles mo:title and mo:year.

The role of SQO in OBDA systems appears to be much more prominent
than in conventional RDBMSs, where it was initially proposed to optimise SQL
queries. While some of SQO techniques reached industrial RDBMSs, it never
had a strong impact on the database community because it is costly compared
to statistics- and heuristics-based methods, and because most SQL queries are
written by highly-skilled experts (and so are nearly optimal anyway). In OBDA
scenarios, in contrast, SQL queries are generated automatically, and so SQO
becomes the only tool to avoid redundant and expensive Join operations [25].

4.5 Why Does It Work?

The techniques above prove to be extremely efficient in practice. Moreover, they
often automatically produce queries that are similar to those written by human
experts. To understand why, we briefly review the process of designing database
applications [6]. It starts with conceptual modelling which describes the appli-
cation domain in such formalisms as ER, UML or ORM. The conceptual model
gives the vocabulary of the database and defines its semantics by means of hi-
erarchies, cardinality restrictions, etc. The conceptual model is turned into a
relational database by applying a series of standard procedures that encode the
semantics of the model into a flat relational schema. These procedures include:

– amalgamating many-to-one and one-to-one attributes of an entity to a sin-
gle n-ary relation with a primary key identifying the entity (e.g., title with
mo:title and mo:year); cf. Section 4.4;

– using foreign keys over attribute columns when a column refers to the entity
(e.g., title and castinfo); cf. Section 4.1;

– using type (discriminating) attributes to encode hierarchical information
(e.g., castinfo); cf. Sections 4.2 and 4.3.

As this process is universal, the T -mappings created for the resulting databases
are dramatically simplified by the Ontop optimisations (opt1)–(opt3), and the
resulting UCQs are usually of acceptable size and can be executed efficiently by
RDBMSs.
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