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Abstract. The formalisation of defeasible reasoning in automated systems is be-
coming increasingly important. Description Logics (DLs) are nowadays the main
logical formalism in the field of formal ontologies. Our focus in this paper is to
devise a practical implementation for prior work that formalises a version of Ra-
tional Closure (an important type of defeasible reasoning) for DLs. We show that
the conclusions drawn from it are generally intuitive and desirable. Moreover, we
present experimental results showing that using Rational Closure for ontologies
of reasonable size is practical.

1 Introduction

Reasoning with exceptions has been a major topic in AI since the 80’s. The problem
has been the assumption of certainty, in monotonic systems, of represented information
when deriving inferences. These systems generally cannot accommodate the addition
of new information which contradicts with what is known. For example, if a monotonic
system is told that “Students do not pay taxes” then, upon encountering an exception
(a student who works), it will still conclude that this student is exempt from taxes [14].
Defeasible reasoning is concerned with the development of formalisms which are able
to represent and reason with defeasible (non-strict) facts:“Typically, students do not pay
taxes” is the defeasible counterpart of “Students do not pay taxes”.

The main approaches for introducing defeasible reasoning into KR formalisms (such
as DLs [1]) have been through adaptations or combinations of the following systems:
Circumscription [5, 29], Default Logic [27], Negation as failure [12, 20], Probabilistic
logic [19, 24], Autoepistemic Logic [11] and Preferential reasoning [8, 9, 14].

The theoretical foundation of our work is a DL adaptation of the preferential reason-
ing approach by Lehmann et al. [22,23]. The motivation for focusing on the preferential
approach is that it gives back intuitive inferences using procedures that reduce to clas-
sical DL reasoning. This gives the advantage of being able to use “off-the-shelf” DL
reasoners to perform defeasible inference. Hinging on the decidability of classical DLs,
we find that our preferential approach is also decidable. Here, we focus on a partic-
ular preferential construction, the Rational Closure [23], that has been adapted to the
DL ALC [9].

In this paper, our goals are: to refine the practical implementation of the Rational
Closure algorithm, based on the procedure presented in [9] (Section 2); to reiterate that,
in a DL setting, Rational Closure makes intuitive and desirable inferences in general
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(Section 3) and to show that it is practical to use Rational Closure in a DL setting from
a performance perspective (Section 4). The latter performance evaluation is the main
contribution of this work and is, to our knowledge, the first evaluation of this matu-
rity and nature in the community. We assume that the reader is familiar with DLs [1]
and ALC [28] in particular.

2 An algorithm to compute Rational Closure in ALC

We present an algorithm for computing Rational Closure in ALC, based on a proce-
dure defined by Casini and Straccia [9] and similar in style to Pearl’s System Z [26]
and the possibilistic system by Benferhat et al. [2]; a version of this algorithm has been
published in earlier work [25] and what we present here is a refinement to align fully
with our semantic characterisation of Rational Closure [7]; we omit the theoretical un-
derpinnings, referring the reader to Lehmann and Magidor’s work [23] and, w.r.t. the
DL reformulation, to the work of Casini and Straccia [9] and Britz et al. [7]. Ratio-
nal Closure has a series of very desirable properties from the formal point of view:
the consequence relation has a solid logical connotation, since it is characterised by a
set of structural properties that should be satisfied by any non-monotonic formal sys-
tem [7, 21, 23]; the decision problem can be reduced to a series of classical monotonic
decision steps; eventually, the overall computational complexity of the procedure is the
same as the one of the underlying entailment relation [7, 9].

In order to model defeasible reasoning in ALC, we introduce a new kind of in-
clusion axiom, i.e., a defeasible inclusion axiom C @∼D, which is read as “any object
classified under the concept C is typically also classified under the concept D”, that is,
if we are informed that an object is in the set referred to by C we can conclude that it is
also in the set referred to by D, provided we do not have any other information forcing
us to conclude otherwise. For the semantics of such axioms, we refer the reader to the
work by Britz et al. [7, 8].

We consider knowledge bases (KBs) of the form K = 〈T ,D〉, where T is a DL TBox
and D is known as a DBox which is a finite set of defeasible inclusion axioms. We are
not considering the ABox here, and the algorithm we are going to introduce computes
the Rational Closure only considering concepts, i.e., it will consider KBs K = 〈T ,D〉
and it will be able to decide if C @∼D or C v D is in the Rational Closure of K (i.e., if
it is a defeasible consequence of K according to Rational Closure).

To be more specific, we shall consider only KBs composed by a DBox D: since from
the point of view of the procedure the two axioms C v ⊥ and C @∼⊥ are equivalent and
each classical inclusion axiom C v D is equivalent to the defeasible inclusion axiom
C u ¬D @∼⊥, as explained by Casini and Straccia [9]. Hence it is always possible to
transform a KB K = 〈T ,D〉 into an equivalent KB K′ = 〈∅,DK〉, where DK =
D ∪ {C u ¬D @∼⊥ | C v D ∈ T }.

Example 1. Consider the KB K = 〈T ,D〉, with T = {BactMen v Men,VirMen v
Men} and D = {Men @∼ ¬Fatal,BactMen @∼ Fatal}. K is about meningitis (Men), bac-
terial meningitis (BactMen), viral meningitis (VirMen), and their fatality (Fatal):

We can transform it into a KB composed of just a DBox DK = {BactMen u
¬Men @∼⊥,VirMen u ¬Men @∼⊥,Men @∼ ¬Fatal,BactMen @∼ Fatal}.



3

From now on, when talking about a KB K, we assume that all the information in the
TBox has been moved into the DBox, i.e., we shall assume that we are talking about a
KB 〈∅,DK〉. The use of KBs of the form 〈T ,D〉 will be functional to the exposition,
and has to be considered simply as a renaming of the correspondent DBox DK.

If all the axioms in K were classical inclusion axioms, we would derive that bacterial
meningitis is at the same time fatal (BactMen v Fatal) and non-fatal (BactMen v
Men, Men v ¬Fatal), i.e., it would have turned out to be an empty concept. Thus, we
rather represent some of the strict facts in Kas defeasible ones to exhibit the atypicality
of BactMen (BactMen is atypical w.r.t. to its parent class Men because it has a property
Fatal which is in direct contradiction to a property of its parent i.e. ¬Fatal).

We shall indicate with D the sets of the materialisations of the axioms in D, where
the materialisation of an axiom C @∼D denotes the concept expressing the same sub-
sumption relation of the axiom (i.e., ¬C tD). Hence D = {¬C tD | C @∼D ∈ D}.

The algorithm to compute Rational Closure consists of a main algorithm and two
sub-procedures. All three are based solely on classical entailment for ALC (|=). The
first sub-procedure is called exceptional. Its aim is to determine which of the concepts
named in our axioms are exceptional. Intuitively, a concept is exceptional in a KB if it
refers to a class that is atypical w.r.t. one of its superclasses (e.g. BactMen in the exam-
ple above). Technically, the exceptionality of a concept can be decided using |=, since
a concept C is exceptional in K = 〈∅,D〉 if and only if |=

d
D v ¬C.1 A defeasible

axiom C @∼D ∈ D is considered exceptional if its antecedent C is exceptional. Given
a finite set E of defeasible inclusion axioms, the algorithm exceptional gives back the
subset of E containing the exceptional axioms.

Procedure exceptional(E)
Input: E ⊆ D
Output: E ′ ⊆ E such that E ′ is exceptional w.r.t. E

1 E ′ := ∅;
2 foreach C @

∼D ∈ E do
3 if |=

d
E v ¬C then

4 E ′ := E ′ ∪ {C @
∼D};

5 return E ′;

Once we have defined the notion of exceptionality, we can think of ordering all
the defeasible axioms in our KB with respect to their exceptionality. That is, we can
associate a ranking value to each axiom in the KB by a recursive application of the
algorithm exceptional. computeRanking is the algorithm that, using exceptional as a
sub-procedure, partitions the set D into R = {D0,D1, . . .}, where each set Di contains
the defeasible axioms having i as ranking value.

1 This is the only difference between the present procedure and the ones presented by Casini
and Straccia [9] and Moodley et al. [25], where a concept C is considered exceptional in K
if and only if K |= > v ¬C; the need for such a change has become apparent once we have
defined an appropriate semantics for the Rational Closure in ALC [7].



4

Procedure computeRanking(K)
Input: Defeasible KB D
Output: The rankingR for D

1 E0 := D; E1 := exceptional(E0); i := 0;
2 while Ei+1 6= Ei do
3 i := i + 1; Ei+1 := exceptional(Ei);
4 D∞ := Ei;R := {D∞};
5 for j = 1 to i do
6 Dj−1 := Ej−1\Ej ;R :=R∪ {Dj−1};
7 returnR;

computeRanking receives as input our DBox D. It starts identifying the exceptional
axioms in D (i.e., the set E1), then the exceptional axioms in E1 (i.e., the set E2), and
so on. For some i, it will necessarily turn out that Ei = Ei + 1: that means that Ei
(possibly being empty) is a fixed point of exceptional, and we say that the axioms in Ei
have ∞ as ranking value. That implies that we derive the negation of the antecedents of
such axioms at every step of the ranking construction. That is, we cannot conceive of
a situation so exceptional such that such concepts are non-empty. That means that the
negation of such antecedents is not properly defeasible information, and can be treated
as strict information: C @∼D being in D∞ is equivalent to saying that C v ⊥ is in our
KB. Note that any axiom Cu¬D @∼⊥ obtained from a classical inclusion axiom C v D
always turns out to have ∞ as a ranking value, which corresponds to C u ¬D v ⊥,
which in turn is logically equivalent to the original C v D. Hence D∞ will contain all
the information in the original T plus, possibly, some non-defeasible information that
implicitly follows from the defeasible axioms. We give an example to illustrate this:

Example 2. Consider a KB K = 〈T ,D〉, with T = {E v D} and D = {C @∼ ¬D,C @∼ E}.
K is transformed into DK = {C @∼ ¬D,C @∼ E,E u ¬D @∼⊥}. We apply the rank-
ing procedure, and we obtain that both E u ¬D and C are exceptional concepts, i.e.,
E1 = E0 = DK. Such a result implies that D∞ = DK, and therefore, that our initial
KB K is equivalent to the TBox T ′ = {E v D,C v ¬D,C v E} because we obtain
the same ranking for both. Note that the information that C v ⊥ was not explicit in the
original KB K, and only became derivable when additionally considering the DBox.

Once the algorithm has identified D∞, it ranks all the other axioms: an axiom has i
as a ranking value if i is the highest label for which it turns out to be exceptional, that
is, if it is in Ei but it does not appear anymore in Ei+1. We obtain a partition of D into
R = {D0, . . . ,Di−1,D∞}.

Example 3. Consider the KB in Example 1. computeRanking takes DK as input and
begins to compute the ranking. The result of Lines 1 to 3 will be the sequence E0 = DK,
E1 = {BactMen u ¬Men @∼⊥,VirMen u ¬Men @∼⊥, BactMen @∼ Fatal}, E2 = E3 =
{BactMenu ¬Men @∼⊥,VirMenu¬Men @∼⊥}. Hence, by the instructions from Line 4
to Line 6, we obtain a partition of DK in DK0 = {Men @∼ ¬Fatal}, DK1 = {BactMen @∼
Fatal}, and DK∞ = {BactMen u ¬Men @∼⊥,VirMen u ¬Men @∼⊥}.
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Now, given a defeasible KB K = {∅,D}, we can obtain a ranking R = {D0, . . . ,Dn,
D∞}. Once this ranking is identified we can ask a query of the form C @∼D (noting that
we can translate strict queries of the form C v D into C u ¬D @∼⊥). Algorithm 1 can
determine whether such queries are in the Rational Closure of K. Note that if we are
confronted with a strict query (classical inclusion axiom C v D), one can determine
if it is in the Rational Closure of the KB by checking if it is classically entailed by the
strict information in D (D∞). This can be implemented as an optimisation.

Algorithm 1: Rational Closure
Input: The rankingR of D and query ϕ
Output: true iff ϕ is in the Rational Closure of K

1 n := 0; DR := D\D∞;
2 while |=

d
D∞ u

d
DR v ¬C and DR 6= ∅ do

3 DR := DR\Dn; n := n + 1;

4 return |=
d
D∞ u

d
DR u C v D;

However, for simplicity, Algorithm 1 considers only the case in which the query
is a defeasible inclusion axiom. The algorithm takes as input the ranking and query
C @∼D and determines which portion of R is compatible with the concept C, i.e., which
portion of defeasible information does not imply the negation of C, starting from the
most normal situations up to increasing levels of exceptionality. We give an example:

Example 4. Consider the ranking R in Example 3 and the query ϕ = VirMen @∼ ¬Fatal
which we pose to Algorithm 1. The algorithm checks if |=

d
DK v ¬VirMen, which

is not the case. Hence, we have to check if |=
d
D∞ u

d
DR u VirMen v ¬Fatal,

which is true. On the other hand, if our query is ϕ = BactMen @∼ ¬Fatal, we obtain
a different result: since |=

d
DK v ¬BactMen but 6|=

d
DK/D0 v ¬BactMen,

BactMen is an exceptional class of level 1, compatible with D1, and we have to in-
crease the exceptionality level eliminating the information in D0 from DR. It turns out
that 6|=

d
D∞ u

d
DR uBactMen v ¬Fatal, that is the right conclusion since we have

BactMen @∼ Fatal in our KB.

The computational complexity of the entire procedure is the same as that of the un-
derlying monotonic entailment relation |=, i.e., it is an EXPTIME-complete problem
( [7] and [9], Corollary 2). This is easy to see since the number of classical entailment
checks is at most exponential w.r.t. the size of the ontology (number of axioms). More-
over, note that the defined procedures can be applied to all the DLs that are more expres-
sive than ALC, still preserving the computational complexity of the decision problem
w.r.t. the underlying monotonic entailment relation. Using a more expressive DL than
ALC, the defeasible information will be still represented only by defeasible inclusion
axioms C @∼D, while the strict information different from ALC inclusion axioms (role
inclusion axioms, role transitivity, etc.) must be considered as background knowledge
at each step of the decision procedure. The correctness of Algorithm 1 follows from the
procedure by Casini and Staccia [9] as it is a direct translation/rewriting thereof.
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3 Test Suite

We would like to argue that the kind of reasoning that Rational Closure models is sat-
isfying from an intuitive point of view, i.e., that the conclusions we can draw are rea-
sonable. For a thorough semantical motivation of this the reader should consult our
theoretical work [7]. In this section we make use of a test suite consisting of ontol-
ogy snippets widely used in the community to show that our presented procedure gives
back the same desirable inferences that some other non-monotonic formalisms are able
to derive as well as some which they are not able to derive.

Eukaryotic Cells [30]. Eukaryotic cells (EukCell) have a proper nucleus, but there
are some cells lacking a proper nucleus and are nonetheless considered eukaryotic, such
as the mammalian red blood cells (MamRedBloodCell).

K =

{
EukCell @∼ ∃hasNucleus.>,
MamRedBloodCell v EukCell u ¬∃hasNucleus.>

}
Using only classical subsumption, would imply the non-existence of mammalian

red blood cells (MamRedBloodCell v ⊥), while using defeasible subsumption we ob-
tain the ranking DK0 = {EukCell @∼ ∃hasNucleus.>} and DK∞ = {MamRedBloodCellu
¬(EukCell u ¬∃hasNucleus.>) @∼⊥} that allows mammalian red blood cells to exist
as exceptional eukaryotic cells, without a nucleus. The query MamRedBloodCell @∼
∃hasNucleus.> returns a negative answer, since the concept MamRedBloodCell can
be associated only with DK∞ and not with the entire DK. If we take under considera-
tion another kind of eukaryotic cell, e.g. the cells composing the muscle of a mammal
(we add to our KB MamMuscCell v EukCell), in the absence of more information
the procedure associates the concept MamMuscCell with all the defeasible informa-
tion DK, concluding that it is a typical eukaryotic cell, and hence it has a nucleus
(MamMuscCell @∼ ∃hasNucleus.>).

Other well-known test-examples that present the same structure (a subclass that does
not satisfy some properties typically characterising a super-class) are the Situs Inversus
and the Whale examples [6], and the present procedure treats them in the same way.

Access Control [6]. In this example we deal with an extra level of exceptionality.
A user typically does not have access to a confidential file, but members of the staff do.
However, if a staff member is black listed, the access is revoked.

K =

User @∼ ¬∃AccessTo.Confidential,
Staff @∼ ∃AccessTo.Confidential, Staff v User,
BlackListedStaff v Staff u ¬∃AccessTo.Confidential


If we used only classical subsumption, we would have derived Staff v ⊥ and

BlackListedStaff v ⊥, that would have allowed for undesired conclusions (e.g., Staff v
¬∃AccessTo.Confidential and BlackListedStaff v ∃AccessTo.Confidential). Instead,
using @∼ and Procedure computeRanking we end up with the ranking: DK0 = {User
@∼ ¬∃AccessTo.Confidential}, DK1 = {Staff @∼ ∃AccessTo.Confidential}, and DK∞ =
{Staff u ¬User @∼⊥,BlackListedStaff u ¬(Staff u ¬∃AccessTo.Confidential) @∼⊥}.
Hence the concept Staff can be associated only with the default information in DK1 ∪
DK∞, avoiding the conclusion Staff @∼ ¬∃AccessTo.Confidential. In the same way, the
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concept BlackListedStaff can be associated only with DK∞, avoiding a positive answer
to the query BlackListedStaff @∼ ∃AccessTo.Confidential.

Bee Key. In this example we go beyond ALC, since we make use of qualified
number restrictions. It is a real-world example of classification/taxonomisation of bee
species in sub-Saharan Africa [13] into genera and subgenera. The problem is that there
are exceptions in the characteristics of bee species, and this makes species difficult to
classify into genera and hence genera into families. A case in point is that most male
afrotropical bees have thirteen segment antennae (SegAnt). An afrotropical male be-
longing to sub-family apidae (ApiFBee) and the pasite genus (PGBee), however, only
has twelve segment antennae. We can formalise such information as:

K =

PGBee u Male v = 12 hasPart.SegAnt,
PGBee v ApiFBee, ApiFBee v AfroSFBee,
AfroSFBee u Male @∼ = 13 hasPart.SegAnt


Using a defeasible axiom, we avoid the concept PGBee u Male to turn out as nec-

essarily empty (i.e., the procedure gives back a negative answer to the query PGBee u
Male @∼ = 13 hasPart.SegAnt), while keeping the information that typically males
of the afrotropical family have thirteen-segment antennas. We have shown that Ratio-
nal Closure derives intuitive conclusions for our test suite. It must be noted, however,
that in some cases the inferential power of Rational Closure turns out to be insuffi-
cient. That is, there may be conclusions that are intuitively desirable, but we are not
able to derive. Once a class turns out to be atypical w.r.t. one of its superclasses, it
cannot inherit any of the typical properties associated to each of its super-classes. For
example, if we consider the Access Control case above, and add to the KB the axiom
User @∼ ∃AccessTo.Public, i.e., every user has usually access to public files. Applying
the ranking procedure to the new KB, we obtain the same results as above, only with
the addition of User @∼ ∃AccessTo.Public in DK0 . As above, the axioms in DK0 cannot be
associated to exceptional concepts as Staff and BlackListedStaff, hence we cannot de-
rive neither Staff @∼ ∃AccessTo.Public nor BlackListedStaff @∼ ∃AccessTo.Public, that
would have been desirable conclusions. In order to overcome such inferential limits, we
have to extend the inferential power of Rational Closure. Among the proposed exten-
sions, the most well-known one is the Lexicographic Closure [10, 22] which addresses
the shortcoming of Rational Closure described above. We plan to present the procedure
for computing it in DLs and the relevant experimental results in future publications.

4 Experiments

We have run preliminary experiments to determine the practical performance of the
Rational Closure algorithm. To our knowledge there are no other published evaluations
of this scale or nature for defeasible reasoning approaches. In this section we give a
description of the data we generated and present the results of our experiments.

Setup. We initially considered using, as our data, EL⊥ test ontologies graciously
made available on the LoDEN (http://loden.fisica.unina.it) project website. LoDEN
stands for Low complexity Description Logics with Non-monotonic features. In the
end, although the ontologies were of sufficient size, we decided that there were too few
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in the dataset to be statistically significant. Also, we decided that we are more inter-
ested in the performance for ALC. Therefore, we generated our own dataset as follows
to address our needs: we randomly generated 11 sets of 50 OWL ontologies each (all
represented in ALC). Each set represented a different percentage defeasibility (ratio
of defeasible to strict axioms in the ontologies) in increments of 10 from 0 to 100. The
number of axioms in the ontologies of each set varied uniformly between 150 and 5150.

It is notable that the size of the ontologies cannot be considered large-scale to be
representative of mature bio-medical ontologies such as those stored in the NCBO Bio-
Portal corpus (http://bioportal.bioontology.org) but at the same time our ontologies are
by no means small and give an accurate reflection of the average sizes of application
ontologies in other corpuses such as the SWEET (http://sweet.jpl.nasa.gov) corpus. We
motivate the use of randomly generated ontologies by observing that the defeasibility
paradigm is not as yet widely embraced in “real-world” ontology development. There
simply aren’t any applied ontologies in existence incorporating similar notions of defea-
sibility to which we are presenting. The idea of these experiments was to get an initial
sense for how well the Rational Closure algorithm performs with non-trivial ontologies
of reasonable size. We conjecture that the data we have generated is qualitatively and
quantitatively appropriate as a first attempt to determine this. Our ALC ontology gen-
erator and test ontologies are available for download at: http://tinyurl.com/onwddh6.

In addition to the ontologies, we also randomly generated a set of TBox queries for
each ontology using terms in their signatures (concept and role names in the ontology).
The total number of queries generated per ontology was 2 percent of the number of
axioms in that ontology. The task was then to check entailment of the queries in each
ontology using Rational Closure (Section 2). The first step was to generate the rankings
of the ontologies; and then finally to execute the queries. We recorded the average rank-
ing computation times, the number of ranks that occurred in each ranking and the aver-
age query answering times. The experiments were carried out on an Intel Core 2 Duo
machine with 2GB of memory allocated to the JVM (Java virtual machine). The classi-
cal DL reasoning implementation used was HermiT (http://www.hermit-reasoner.com)
accessed through the OWLAPI (http://owlapi.sourceforge.net).

Results. From the perspective of ontology engineering, we view the computation
of the ranking of a certain version of an ontology as a task to be executed offline.
The typical scenario is that the ranking will be computed once a stable version of the
ontology is obtained and then stored offline. When query answering needs to be carried
out the ranking can be loaded on demand. The average number of ranks per ranking of
an ontology that we encountered in our dataset is shown in Figure 1.

In terms of the average performance of the ranking computation procedure, our
results show a steady increase in this measurement as the percentage defeasibility of
ontologies increases. In the case of 10 percent defeasiblility we obtained an average
ranking computation time of less than half a second. In the worst case, that is in the
case of ontologies with 100 percent defeasibility the average time to compute a ranking
was found to be in the region of 8 seconds. In the special case where we have 0 percent
defeasibility, query answering reduces to classical DL entailment and hence no ranking
is required. If we study the impact of the number of ranks in a particular ranking on
our performance results, we find that we obtained 30 different values for the number of
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Fig. 1. Average number of ranks in a ranking over the ontologies in the dataset.

ranks in our dataset ranging between 0 and 49. If we disregard the 0 defeasibility case,
the difference between the times for computing the rankings with the lowest number
of ranks (3) and the highest number of ranks (49) is about 22.5 seconds. Results are
depicted in Figure 2.

Fig. 2. The top graph indicates the average time taken to compute the ranking for an ontology in
each category of defeasibility. The bottom graph indicates the average time taken to compute the
ranking for an ontology in the dataset that has the indicated number of ranks.

In summary, for computation of the ranking of the ontologies in our dataset we can
conclude that on average computing the ranking takes between 0.4 and 8 seconds for
ontologies that are between 150 and 5150 axioms large. This seems to indicate that
computation of the ranking, as an offline task, is feasible from an ontology engineering
point of view. It is also clear from the results that the number of ranks in the ranking
affects the performance of the ranking computation. It is likely that this is because
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of more entailment checks required to compute rankings with more ranks. We note
that updating of ontologies to new versions will require recomputation of the ranking
although this need not be in a naive way. We have optimisations in the pipeline for
modifying existing rankings to reflect the new changes in the ontology.

In terms of query execution, our results show that defeasible reasoning is practical in
ontologies of similar sizes to those in our dataset. With an additional optimisation step
we have pruned away axioms in the ranking that are irrelevant to the signature of the
query using ontology modularisation techniques [17,18]. The results are that executing
a single TBox query takes on average between 1.2 and 1.7 milliseconds depending on
the percentage of defeasibility of the ontologies. We note also that defeasible reason-
ing is very close to the performance of classical entailment (0.7 milliseconds in the 0
percent defeasible case). These results strongly indicate that query answering can be
executed on demand at least in the context of average ontology sizes between 150 and
5150 and average ranking sizes up to 50. Query results are shown in Figure 3.

Fig. 3. The average time taken to execute a query for an ontology in each category of defeasibility.

5 Related Work

Closely related to our work from a theoretical point of view is that of Giordano et
al. [15, 16] which uses preferential orderings on the individuals to define a typicality
operator T s.t. the expression T(C) v D corresponds to our C @∼D. They provide a
tableau calculus for their system that relies on the properties of the preferential conse-
quence relations. In order to augment the inferential power of their system they have
used circumscription techniques, obtaining systems that share properties of both the
preferential and the circumscriptive approaches. At present, we are not aware of any im-
plementation of their work. Outside the family of preferential systems there are mature
proposals based on circumscription for DLs by Bonatti et al. [3,4,6] and by Sengupta et
al. [29]. To our knowledge, the proposal by Bonatti et al. is the only one, together with
the present one, that has been properly implemented. We are aware that they have per-
formance results for their latest circumscriptive approach which are not yet published
to our knowledge, and we hereby acknowledge their input to our work through sharing
of test data for comparison purposes.
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The main drawback of circumscriptive approaches is the burden on the ontology en-
gineer to make appropriate decisions related to the fixing and varying of concepts and
the priority of defeasible subsumption statements. Such choices can have a major effect
on the conclusions drawn from the system, and can easily lead to counter-intuitive in-
ferences. For example, in the Eukaryotic Cell example, circumscription can derive the
conclusion MamRedBloodCell v ⊥ (Bonatti’s personal communication), which means
that the existence of mammalian red blood cells is impossible, that is clearly an unde-
sirable result. Moreover, the use of circumscription usually implies a considerable in-
crease in computational complexity w.r.t. the underlying monotonic entailment relation
(TBox reasoning with concept-circumscribed KBs for ALC is NEXPNP-complete [6]),
in contrast to the EXPTIME-complete complexity of our approach (Section 2).

6 Conclusions and future work

We have presented an algorithm for computing Rational Closure for ALC (Section
2), and we have shown that such a procedure gives back desirable conclusions w.r.t.
some representative test-examples extracted from the literature (Section 3). The main
contribution of the present work is a first but significant practical evaluation of the per-
formance of Algorithm 1 w.r.t. ontologies of moderate size. Our results show that query
answering can be computed on demand and is roughly twice as slow as classical entail-
ment over the dataset. We have seen that despite the fact that computation of classical
entailment is clearly more efficient, the cost of the implementation of Rational Clo-
sure is not at all excessive. Therefore, the implementation of the additional inferential
capabilities of Rational Closure is justified.

About future work, we have implemented Lexicographic Closure of the TBox and
we plan to carry out an analogous evaluation (to the one presented in this paper) for it.
We have also developed a semantics for Rational Closure of the ABox and a companion
algorithm for computing this. We plan to implement this algorithm and to carry out a
similar experimental evaluation of this. In addition, we plan to explore the feasibility of
other rational consequence relations as candidates for defeasible entailment.
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