
Concept-Based Semantic Difference in
Expressive Description Logics

Rafael S. Gonçalves, Bijan Parsia, and Ulrike Sattler

School of Computer Science
University of Manchester

Manchester, United Kingdom

Abstract. Detecting, much less understanding, the difference between
two description logic based ontologies is challenging for ontology engi-
neers due, in part, to the possibility of complex, non-local logic effects of
axiom changes. It is often quite difficult to even determine which terms
have had their meaning altered by a change. To address this, various prin-
cipled notions of “semantic diff” (based on deductive inseparability) have
been proposed in the literature and have been shown to be computation-
ally practical for the expressively restricted case of ELHr-terminologies
(which covers significant fragments of SNOMED-CT). However, prob-
lems arise even for such limited logics as ALC: First, computation gets
more difficult, becoming undecidable for logics such as SROIQ which
underly the Web Ontology Language (OWL). Second, the presence of
negation and disjunction make the standard semantic difference too sen-
sitive to change: essentially, any logically effectual change always affects
all terms in the ontology. To address these issues, we formulate the central
notion of finding the minimal change set based on model inseparability,
and present a method to differentiate changes which are specific to (and
“of interest” for) particular concept names. Subsequently we present a
series of computable approximations, and compare the variously approx-
imated change sets over a series of versions of the NCI Thesaurus (NCIt).

1 Introduction

Determining the significant differences between two documents (so-called “diff”)
is a standard and significant problem across a wide range of activities, notably
software development. Standard textual diffing algorithms perform poorly on de-
scription logic (DL) based ontologies, both for structural reasons (e.g., ontology
serializations, such as those of OWL, tend not to impose stable ordering of ax-
ioms), and due to the highly non-local and unintuitive logical effects of changes
to axioms. Syntactic diffs, such as those based on OWL’s notion of “structural
equivalence” [4, 8, 12], detect axiomatic changes between ontologies, but fall short
on the identification of differences w.r.t. their entailment sets. Recent notions of
semantic difference based on conservative extensions have provided a robust the-
oretical and practical basis for analysing these logical effects. In particular, they
provide a means for determining which terms have had their meaning “affected”
by an edit even if that effect is not readily determined by syntactic analysis.

Unfortunately, semantic difference is computationally expensive even for inex-
pressive logics such as EL. For the very expressive logics such as SROIQ (the
DL underlying OWL 2) it is undecidable [10]. Furthermore, as we discuss in this
paper, semantic difference runs into other difficulties in more expressive logics.
In particular, if we compare entailment sets over logics with disjunction and
negation we easily end up with vacuously altered terms: any logically effectual
change will alter the meaning of every term.

In this paper, we provide a non-trivializable notion of semantic difference
and a series of computable approximations of it for expressive description logics.
We evaluate these algorithms on a select subset of the National Cancer Insti-
tute Thesaurus (NCIt) corpus, comparing the changes found via the proposed
approximations and related approaches. Our experiments show that one approxi-
mation, “Grammar diff”, finds significantly more changes than all other methods
across the corpus and far more than are identified in the NCIt change logs.

2 Preliminaries

We assume the reader to be reasonably familiar with ontologies and OWL, as
well as the underlying description logics (DLs) [1]. We use terms to refer to
concept and role names. When comparing two ontologies we refer to them as O1

and O2, and their signatures (i.e., the set of terms occurring in them) as Õ1 and

Õ2, respectively. The signature of an axiom α is denoted α̃. Throughout this
paper we use the standard description and first order logic notion of entailment;
an axiom α entailed by an ontology O is denoted O |= α. We refer to an effectual
addition (removal) from O1 to O2 as an axiom α such that α ∈ O2 and O1 6|= α
(α ∈ O1 and O2 6|= α) [4]. Thus two ontologies are logically equivalent, denoted
O1 ≡ O2, if there is no effectual change (addition or removal) between O1 and
O2. We also use the notion of a locality-based module [2]; a module M of O
for a set of terms (signature) Σ is a subset of O that preserves all entailments
of O w.r.t. Σ. A ⊥-module (>-module) extracted from an ontology O for Σ is
denoted ⊥-mod(Σ,O) (>-mod(Σ,O)). The set of subconcepts of an ontology O
is recursively defined as all subconcepts found in each axiom of O, plus {>,⊥}.

The restriction of an interpretation I to a set of terms Σ is denoted I|Σ .
Two interpretations I and J coincide on a signature Σ (denoted I|Σ = J |Σ) if
∆I = ∆J and tI = tJ for each t ∈ Σ.

Throughout this paper we use the notion of model conservative extension
(mCE) [3, 10], and associated inseparability relation [14]. The notions of
mCE-based inseparability, Σ-difference and Σ-entailment are, respectively:

Definition 1 Given two ontologies O1, O2 over a DL L, and a signature Σ.

O2 is model Σ-inseparable from O1 (O1 ≡mCEΣ O2) w.r.t. L(1)

if {I|Σ | I |= O1} = {J |Σ | J |= O2}
Diff(O1,O2)Σ = {η | O1 6|= η,O2 |= η and η is a GCI over L,(2)

with η̃ ⊆ Σ}
O1 Σ-entails O2 if Diff(O1,O2)Σ = ∅(3)

3 State of the Art in Semantic Diff

The tool ContentCVS [6] employs a notion of deductive difference (for OWL 2
ontologies) which takes into account entailments of type A v C,1 where C is a
concept formed over grammar Gcvs and A,B are concept names, as follows:

Grammar Gcvs
C −→ B | ∃r.B | ∀r.B | ¬B

The rationale behind the use of this grammar is not exactly clear, and seems
rather ad hoc. In a user study of ContentCVS, users criticised “the excessive
amount of information displayed when using larger approximations of the de-
ductive difference” [6]. This suggests that, instead of focusing on presenting
entailments in the difference, we might prefer to present which concept names
are affected by those entailments, and how (e.g., specialised or generalised).

The diff method underlying the system CEX [7] establishes a way to com-
pute the semantic differences between two ontologies,2 based on the notion of
Σ-entailment, and corresponding diff notion Σ-difference. The output of CEX
is a set of entailed axioms in the Σ-difference, so called witness axioms, and
associated affected terms (denoted AT(O1,O2)Σ). The set AT(O1,O2)Σ con-
tains specialised (denoted AT(O1,O2)L

Σ) and generalised (AT(O1,O2)R
Σ) concept

names, as defined in [7]. The set AT(O1,O2)L
Σ contains those concept names A

for which there is a witness axiom α : A v C that follows from O2 but not
O1. The concept C in such axioms α is called a witness for the change in A. In
AT(O1,O2)R

Σ the witness is the subsumer rather than the subsumee.
The computational complexity of deciding Σ-entailment is undecidable for

expressive DLs such as SROIQ. For EL it is already ExpTime-complete [11],
while for ALC, ALCQ, and ALCQI it is 2ExpTime-complete [10]. Aside from
the high complexity result, a direct extension of Σ-difference for more expressive
logics such as ALC would fail; when we step beyond EL as a witness language
into more expressive logics with disjunction and negation, then we can create
a vacuously true witness that would make AT(O1,O2)Σ contain all terms in Σ
(so long as O1 6≡ O2). The ontologies need not be in the witness language; in
fact consider the following EL ontologies: O1 = {A v B,C v >, D v >}, and
O2 = {A v B,C v D}. Clearly O2 is a conservative extension of O1 w.r.t.

Σ = {A,B}, but if we take Σ′ = {Õ1 ∩ Õ2} then that is no longer the case.
A witness axiom for the separability would be, e.g., η := A v ¬C t D. This
witness “witnesses” a change to every concept A′ ∈ Σ′; for each witness axiom
η′ : A′ v ¬C tD we have that O1 6|= η′, while O2 |= η′. Such a witness would
suffice to pinpoint, according to Σ-difference, that all terms in Σ′ have changed:
AT(O1,O2)Σ′ = Σ′ since > v ¬C tD. Consequently, this kind of witnesses are
uninteresting for any particular concept aside from >. Likewise, a change A v ⊥
implies that, for all B in the signature of the ontology in question, we have that
A v B. Yet these consequences are of no interest to any concept B.

1 Additionally, ContentCVS also compares role hierarchies.
2 Albeit the implementation is restricted to acyclic ELHr terminologies (EL extended

with role inclusions and range restrictions).

Similar to the case of the least common subsumer [9], the presence of disjunc-
tion (and negation) trivialises definitions that are meaningful in less expressive
logics. This phenomenon conveys the need to move to another diff notion when
dealing with propositionally closed ontologies, one which distinguishes directly
affected terms (thus “specific” changes) and indirectly affected terms (such as
those via > and ⊥ from previous examples).

4 Semantic Diff

Given the shortcomings of existing methodologies, we present a semantic diff
method that a) determines which concepts have been affected by changes. For
exposition reasons, we concentrate on concepts, though roles are easily added.
And b) identifies which concepts have been directly (or indirectly) changed.

Ideally, a solution to these problems would be 1) a computationally feasible
function (for OWL 2 ontologies), 2) based on a principled grammar, that 3)
returns those concept names affected by changes between two ontologies, while 4)
distinguishing whether each concept name is directly (or indirectly) specialised
and/or generalised.

4.1 Determining the Change Set

Given two ontologies O1 and O2, such that O1 6≡ O2 (i.e. there exists at
least one effectual change in Diff(O1,O2)), we know that O1 and O2 are not

Σ-inseparable (for Σ = Õ1 ∪ Õ2) w.r.t. model inseparability, i.e. O1 6≡mCEΣ O2

since an effectual change implies some change in semantics. In order to pinpoint
this change, we need to find the set of terms Σ′ s.t. O1 is mCE-inseparable from
O2 w.r.t. the remaining signature Σ \ Σ′: O1 ≡mCEΣ\Σ′ O2. Then we know that,

from O1 to O2, there are no changes in entailments over Σ \ Σ′. We refer to
this set of terms Σ′ as the Minimal Change Set (denoted MinCS(O1,O2)), in
the sense that we can formulate a non-trivial entailment η over Σ′ s.t. O1 6|= η
but O2 |= η. Thus we denote these terms as affected.

Definition 2 (Minimal Affected Terms) A set Σ′ ⊆ Σ is a set of minimal
affected terms between O1 and O2 if:

O1 6≡mCEΣ′ O2 and for all Σ′′ (Σ′ : O1 ≡mCEΣ′′ O2.

The set of all such sets is denoted MinAT(O1,O2).

In order to form the minimal change set, we take the union over all sets of
affected terms in MinAT(O1,O2).

Definition 3 (Minimal Change Set) The minimal change set, denoted
MinCS(O1,O2), of two ontologies is defined as follows:

MinCS(O1,O2) :=
⋃

MinAT(O1,O2) .

Given a set of witness axioms, we can tell apart specialised and generalised
concepts depending on whether the witness concept is on the right hand
side (RHS) or the left hand side (LHS) of the witness axiom, accordingly.
Furthermore, we regard a concept name A as directly specialised (generalised)
via some witness C if there is no concept name B that is a superconcept
(subconcept) of A, and C is also a witness for a change in B. Otherwise A
changed indirectly.

Definition 4 (Affected Terms) For a diff function Φ, the sets of affected con-
cept names for a signature Σ are:

Φ- AT(O1,O2)L
Σ = {A ∈ Σ | there exists A v C ∈ Φ- Diff(O1,O2)Σ}

Φ- AT(O1,O2)R
Σ = {A ∈ Σ | there exists C v A ∈ Φ- Diff(O1,O2)Σ}

Φ- AT(O1,O2)
>
Σ =

{
{>} if there is a > v C ∈ Φ- Diff(O1,O2)Σ
∅ otherwise

Φ- AT(O1,O2)
⊥
Σ =

{
{⊥} if there is a C v ⊥ ∈ Φ- Diff(O1,O2)Σ
∅ otherwise

Φ- AT(O1,O2)Σ =
⋃
Y ∈{L,R,>,⊥} Φ- AT(O1,O2)

Y
Σ

Given a concept name A ∈ Φ-AT(O1,O2)L
Σ (analogously A ∈ Φ-AT(O1,O2)R

Σ),
and a set of terms Σ+ := Σ ∪ {>,⊥}:

A direct change of A is a witness C s.t. A v C (C v A) ∈ Φ- Diff(O1,O2)
and there is no B ∈ Σ+ s.t. O2 |= A v B (O2 |= B v A),O2 6|= A ≡ B, and

B v C (C v B) ∈ Φ- Diff(O1,O2) .

An indirect change of A is a witness C s.t. A v C (C v A) ∈ Φ- Diff(O1,O2)
and there is at least one B ∈ Σ+ s.t. O2 |= A v B (O2 |= B v A),

O2 6|= A ≡ B and B v C (C v B) ∈ Φ- Diff(O1,O2) .

Concept A is purely directly changed if it is only directly changed
(analogously for purely indirectly changed).

As an example, given ontologies O1 := {A v B, ∃r.C v D} and O2 :=
O1∪{B v ∃r.C}, we have that B is purely directly specialised via witness ∃r.C,
while A is indirectly specialised via the same witness, since O2 |= A v B and
B v ∃r.C ∈ Diff(O1,O2), in other words, concept A changes via B.

The distinction between directly- and indirectly-affected concept names, and
the separation of concepts affected via > and ⊥, allows us to overcome the
problems described in Section 3, w.r.t. propositionally closed description logics.

4.2 Computation

Deciding the minimal change set between two ontologies involves deciding
whether, for a given signature Σ, two ontologies are mCE-inseparable w.r.t.
Σ. Since mCE-inseparability is undecidable for SROIQ [10], we present two
sound but incomplete approximations to the problem of computing the minimal
change set: “Subconcept” and “Grammar” diffs.

In addition, and in order to provide a basis for comparison between diff no-
tions, we define the set of differences which would be captured by a comparison
of the concept hierarchies between two ontologies, i.e. differences in atomic sub-
sumptions, as AtDiff(O1,O2)Σ . Hereafter we refer to ContentCVS’s diff notion
as CvsDiff(O1,O2)Σ .

The first approximation, Subconcept diff (denoted SubDiff(O1,O2)Σ), is
based on subconcepts of ontologies, wherein we check whether there is a dif-
ference in entailments of type C v D, where C or D is a possibly complex
concept from the set of Σ-subconcepts of O1 and O2 (see Definition 5). It is at
least conceivable that many entailments will involve subconcepts, and, if that is
the case, those would be witnesses that the user could understand, since they are
explicitly asserted in either ontology. Moreover, this notion may exhibit entail-
ment differences which would not show up if we restrict ourselves to either atomic
subsumptions, or specific forms of entailments (in the manner of ContentCVS).
The restriction to forms of concepts explicit in either ontology limits the amount
of change captured. E.g., if we have O1 = {A v ∃r.B}, and in O2 add an axiom
B v ∃s.C, the change A v ∃r.∃s.C would not be found. However, the rationale
behind this approach is that we could detect other kinds of change in a principled
and relatively cheap way, e.g., O1 = {A v B}, O2 = O1 ∪ {B v ∃r.(C u ∃r.D)};
we have that O1 6|= α := A v ∃r.(C u ∃r.D), while O2 |= α.

In order to avoid only considering witnesses in their explicitly asserted
form, we extend the previous diff notion and present Grammar diff (denoted
GrDiff(O1,O2)Σ), which detects differences in additional types of entailments;
the grammars below define the types of concepts taken into account by Grammar
diff, where SC stands for a subconcept of O1 ∪ O2.

Grammar GL
C −→ SC | SC t SC | ∃r.SC | ∀r.SC | ¬SC

Grammar GR
C −→ SC | SC u SC | ∃r.SC | ∀r.SC | ¬SC

The semantic difference between ontologies w.r.t. each mentioned diff notion
is defined as follows:

Definition 5 Given two ontologies and a signature Σ, the set of Σ-differences
for a diff notion Φ is:

Φ- Diff(O1,O2)Σ := {η ∈ Φ-ax | O1 6|= η ∧ O2 |= η ∧ η̃ ⊆ Σ}

where the set Φ-ax is defined as follows:

if Φ = At, {C v D | C,D ∈ Σ}
if Φ = Sub, {C v D | C,D subconcepts in O1 ∪ O2}
if Φ = Gr, {C v D |D a concept over GL, or C a concept over GR}
if Φ = Cvs, {C v D | C ∈ Σ and D a concept over Gcvs}
if Φ = CEX, {C v D | C,D subconcepts in L(Σ)}

It is not hard to see that there are subset relations between each diff and
the actual MinCS(O1,O2) that they approximate, as per Lemma 1:

Lemma 1 Given two ontologies and a signature Σ:

AtDiff-AT(O1,O2)Σ ⊆ SubDiff-AT(O1,O2)Σ ⊆ GrDiff-AT(O1,O2)Σ ⊆
MinCS(O1,O2)

CvsDiff-AT(O1,O2)Σ ⊆ GrDiff-AT(O1,O2)Σ

The current implementation of CEX only takes as input acyclic ELHr
terminologies, that is, ELHr TBoxes which are 1) acyclic and 2) every concept
appears (alone) on the left-hand side of an axiom exactly once. In order to apply
CEX to knowledge bases that are more expressive than ELHr terminologies, we
rely on an approximation that uses CEX as a sub-routine.

Definition 6 (Approx-CEX) Given two non-ELHr ontologies, the Approx-
CEX procedure is:

1. For i ∈ {1, 2}, approximate Oi as an ELHr terminology, resulting in O′
i:

(a) Remove all non-EL axioms.
(b) Break cycles (non-deterministically).
(c) Remove all but one axiom with a given atomic left-hand side.

2. Apply CEX to O′
1, O′

2, resulting in a temporary change set: TempCS.
3. For each α ∈ TempCS, add α to FinalCS if O1 6|= α and O2 |= α.
4. Return FinalCS; the set of axioms in the diff.

Note that step 1 is parameterizable with any ELHr approximation algorithm.
Additionally, step 2 can be replaced with a diff implementation for more expres-
sive logics, with either the input approximation (step 1) and soundness check
(step 3) removed, or with an altered step 1 depending on the expressivity of the
input. Step 4 in Definition 6 is necessary to ensure that changes detected within
the ELHr approximations (obtained in step 1) are sound changes w.r.t. the whole
ontologies. Obviously, this approximation-based procedure throws away a lot of
information and is not deterministic. However, even such an approximation can
offer useful insight, esp. if it finds changes that other methods do not. There are
more elaborate existing approximation approaches (e.g., [13]), but they gener-
ally do not produce ELHr terminology, so their use requires either changing the
approximation output or updating CEX to take non-terminological EL input.

5 Empirical Results

The object of our evaluation is a subset of the NCIt corpus used in [4], with
expressivity ranging from ALCH(D) to SH(D). More specifically, we take into
account 12 versions of the NCIt which contain concept-based change logs. In
order to investigate the applicability of our approach we (1) compare the re-
sults obtained via our approximations with those output by Approx-CEX and
ContentCVS, and (2) inspect whether the devised approximations capture any
direct changes not reported in the NCIt change logs.

The experiment machine used is an Intel Xeon Quad-Core 3.20GHz, with
16Gb DDR3 RAM. The system runs Mac OS X 10.6.8, Java Virtual Machine
(JVM v1.5), and all tests were run using the OWL API (v3.2.4) [5].3

In terms of computation times, on average computing AtDiff(O1,O2)Σ takes
≈20 seconds, Approx-CEX takes≈9 minutes, while computing SubDiff(O1,O2)Σ
takes ≈35 minutes. The computation of GrDiff(O1,O2)Σ takes ≈14 hours for a
subset of the ontology signature of size ≈1800 concept names, and ContentCVS
≈10 hours on the same randomly selected signature as GrDiff(O1,O2)Σ .4

5.1 Diff Comparison

The comparison of each diff w.r.t. number of affected concept names found is
shown in Table 1, which displays the number of specialised concepts (L-changes),
generalised concepts (R-changes), and the total number of affected concepts.
Figure 1 shows a comparison of the number of affected concept names found by
ContentCVS and Grammar diff within the randomly selected signatures. Note
that, at this point, no distinction is made between direct and indirect changes.

Table 1: Number of affected concept names found by each diff, and their respec-
tive coverage w.r.t. affected concepts found by GrammarDiff.

NCIt
Approx-CEX AtDiff SubconceptDiff GrammarDiff
L R Total L R Total L R Total L R Total

1 (05.07d) 454 307 668 979 486 1,416 1,701 490 2,131 10,501 3,597 12,178
2 (05.10e) 413 648 851 792 499 1,208 1,436 518 1,816 11,366 3,442 12,975
3 (05.11f) 3,508 2,089 5,013 5,233 1,172 6,135 5,910 1,178 6,528 12,379 6,806 17,542
4 (05.12f) 1,400 2,813 2,950 2,358 1,485 3,676 45,825 1,495 45,932 19,547 13,691 28,305
5 (06.01c) 7,305 2,495 8,692 3,808 1,321 4,978 15,254 1,498 15,691 36,333 20,137 39,491
6 (06.02d) 1,131 684 1,520 3,502 624 3,923 5,806 663 6,203 10,621 11,331 19,741
7 (06.03d) 1,721 2,434 3,052 2,462 1,127 3,217 5,777 1,201 6,330 20,620 9,799 24,567
8 (06.04d) 417 1,382 1,590 6,284 1,631 6,806 6,952 1,674 7,428 10,275 7,576 14,047
9 (06.05d) 1,095 1,455 1,711 2,224 678 2,745 4,928 737 5,329 13,291 9,223 13,819
10 (06.06e) 1,649 1,002 2,154 4,073 607 4,553 5,992 663 6,415 26,161 5,345 28,005
11 (06.08d) 624 968 1,099 1,240 610 1,714 3,910 731 4,325 37,674 3,630 38,502

Avg. Cov. 9% 18% 12% 20% 12% 18% 52% 13% 41%
Min. Cov. 2% 6% 3% 3% 6% 4% 10% 6% 11%
Max. Cov. 28% 31% 29% 61% 22% 48% 100% 22% 100%

Due to computational issues regarding Grammar diff and ContentCVS, in-
stead of comparing each pair of NCIt versions w.r.t. Σ = Õ1 ∪ Õ2 we take a
random sample of the terms in the ontology (generally n ≈ 1800) such that a
straightforward extrapolation allows us to determine that the true proportion
of changed terms lies in the confidence interval (+-3%) with a 99% confidence
level. In general, Grammar diff, even taking into account the confidence inter-
val, consistently detects more changes (both L and R) than all other diffs. Also,

3 http://owlapi.sourceforge.net/
4 Note that, originally, ContentCVS only computes AT(O1,O2)L

Σ, but in order to pro-
vide a direct comparison with the diffs here proposed we also compute AT(O1,O2)R

Σ

according to ContentCVS’s grammar.

0	

200	

400	

600	

800	

1000	

1200	

1400	

1	 (
05
.07
d)	

2	 (
05
.10
e)	

3	 (
05
.11
f)	

4	 (
05
.12
f)	

5	 (
06
.01
c)	

6	 (
06
.02
d)	

7	 (
06
.03
d)	

8	 (
06
.04
d)	

9	 (
06
.05
d)	

10
	 (0
6.0
6e
)	

11
	 (0
6.0
8d
)	

ContentCVS	

Grammar	 diff	

Fig. 1: Comparison of total number of affected concepts found by ContentCVS
and Grammar diff (y-axis: number of concept names, x -axis: NCIt version).

despite the one case where the lower bound of detected changes is inferior to
another diff, in version 4, it cannot be worse than Subconcept diff by Lemma 1.

5.2 Direct Changes in the NCIt Logs

The change logs supplied with each version of the NCIt contain those concept
names which were subject to changes. However, it is unclear whether each re-
ported change also (or solely) relates to annotation changes. It could be the case
that a reported concept change is purely ineffectual. In spite of this ambiguity, it
should be expected that a change log contains concept names that were directly
changed, and this is what we aim to find out in our next experiment; we extract
the concept names mentioned in the change log, and verify whether the obtained
direct changes for each NCIt version are contained in said change logs. The re-
sults are shown in Table 2, where the affected concept names shown in Section 5.1
are partitioned into purely direct, purely indirect, or both directly and indirectly
changed concepts. Overall, we see that the change logs do miss a lot of direct
changes, more specifically, on average, AtDiff(O1,O2)Σ reveals 767 changed con-
cept names not mentioned in the change logs, while SubDiff(O1,O2)Σ uncovers
908 such concept names per NCIt version.

6 Discussion

First thing to notice is that SubDiff finds many more changes than AtDiff and
Approx-CEX, while often not reaching close to the projected values of Gram-
marDiff (the average coverage being 41%). The latter, as expected, captures far
more changes within the selected signatures than ContentCVS.

Table 2: Number of purely direct (P.D.), purely indirect (P.I.), and both directly
and indirectly (Mix) changed concepts. Number of directly changed concepts
that do not appear in the NCIt change logs (denoted Missed).

NCIt
AtDiff SubDiff

L R
Missed

L R
Missed

Mix P.D. P.I. Mix P.D. P.I. Mix P.D. P.I. Mix P.D. P.I.

1 524 122 333 88 206 192 798 686 134 881 88 210 192 953
2 440 125 227 95 179 225 149 803 344 289 96 198 224 211
3 2,106 215 2,912 211 680 281 315 2,242 549 3,119 212 686 280 445
4 1,498 126 734 146 1,041 298 190 2,647 78 43,100 148 1,050 297 432
5 1,401 154 2,253 127 882 312 243 6,511 1,527 7,216 304 882 312 317
6 813 77 2,612 153 232 239 199 1,163 143 4,500 161 240 262 199
7 984 206 1,272 256 448 423 273 2,400 320 3,057 267 513 421 511
8 5,923 152 209 154 1,267 210 5,546 5930 483 539 157 1,308 209 5,723
9 870 611 743 166 254 258 207 1,775 832 2,321 171 307 259 322
10 594 2,727 752 145 225 237 216 2,110 2,854 1,028 147 280 236 298
11 586 167 487 139 239 232 300 1,050 354 2,506 147 325 259 582

Considering the high number of affected concepts found by SubDiff in versions
4 and 5 of the NCIt, one can argue that analysing such a change set would be
rather unpleasant. By categorising concept names in the change set according
to whether they are directly or indirectly affected, we can greatly reduce the
information overload; notice that, e.g., in version 4 there are 45,825 specialised
concepts, out of which there are only 78 purely directly changed concepts, and
the majority of the remainder are purely indirect changes (43,100). Similarly in
version 5, from 15,254 specialised concepts there are only 1,527 purely direct
changes. Immediately we see that this mechanism can provide an especially
helpful means to assist change analysis, by, e.g., confining the changes shown
upfront to only those which are (purely) direct.

Despite the optimisations applied in GrammarDiff’s implementation, e.g., for
GrDiff(O1,O2)

L
Σ we start by verifying whether there exists some effectual change

between ⊥-mod({A},O1) and ⊥-mod({A},O2), for each A ∈ Σ (analogously we

use >-modules for GrDiff(O1,O2)
R
Σ), only considering witnesses whose signature

is contained in the module signature, stopping once we find a single witness for
a concept name, the computation of GrDiff(O1,O2)Σ still takes long, and needs
further optimisations. The major bottleneck is that the >-modules for a concept
name provide too big an approximation, e.g., for a top-level concept its >-module
contains almost the whole ontology. Thus >-modules do not restrict much of our
search space, not at least in the same way as ⊥-modules do. Additionally, in order
to take advantage of the categorisation mechanism proposed, we would need to
compute all witnesses for each Σ-concept (which is relatively cheap in SubDiff).

7 Conclusions

We have formulated the problem of finding the set of affected terms between on-
tologies via model inseparability, and presented feasible approximations to find-
ing this set. We have shown that each of the approximations can find considerably

more changes than those visible in a comparison of concept hierarchies. Both
sound approximations devised capture more changes than Approx-CEX. The
restrictions imposed by CEX on the input ontologies make change-preserving
approximations a challenge, as we have seen in our attempt to reduce the NCIt
to EL in a less naive way.

The proposed distinction between (purely) direct and indirect allows users
to focus on those changes which are specific to a given concept, in addition to
masking possibly uninteresting changes to any and all concept names (such as
those obtained via witnesses constructed with negation and disjunction), thereby
making change analysis more straightforward. As demonstrated by the NCIt
change log analysis, we have found a (often high) number of direct changes
that are not contained in the NCIt change logs, which leads us to believe the
recording of changes does not seem to follow from even a basic concept hierarchy
comparison, but rather a seemingly ad hoc mechanism.

In future work we aim to optimise the devised approximations so as to com-
pare all NCIt versions w.r.t. their signature union, and deploy an end-user tool.

References

1. Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P.F. (eds.):
The Description Logic Handbook: Theory, Implementation, and Applications.
Cambridge University Press (2003)

2. Cuenca Grau, B., Horrocks, I., Kazakov, Y., Sattler, U.: Modular reuse of ontolo-
gies: Theory and practice. J. of Artificial Intelligence Research 31 (2008)

3. Ghilardi, S., Lutz, C., Wolter, F.: Did I damage my ontology? A case for conser-
vative extensions in description logics. In: Proc. of KR-06 (2006)

4. Gonçalves, R.S., Parsia, B., Sattler, U.: Categorising logical differences between
OWL ontologies. In: Proc. of CIKM-11 (2011)

5. Horridge, M., Bechhofer, S.: The OWL API: A Java API for working with OWL
2 ontologies. In: Proc. of OWLED-09 (2009)

6. Jiménez-Ruiz, E., Cuenca Grau, B., Horrocks, I., Berlanga Llavori, R.: Support-
ing concurrent ontology development: Framework, algorithms and tool. Data and
Knowledge Engineering 70(1) (2011)

7. Konev, B., Walther, D., Wolter, F.: The logical difference problem for description
logic terminologies. In: IJCAR-08. vol. 5195 (2008)

8. Křemen, P., Šmı́d, M., Kouba, Z.: OWLDiff: A practical tool for comparison and
merge of OWL ontologies. In: Proc. of DEXA-12 (2011)

9. Küsters, R.: Non-Standard Inferences in Description Logics, LNAI, vol. 2100.
Springer-Verlag (2001)

10. Lutz, C., Walther, D., Wolter, F.: Conservative extensions in expressive description
logics. In: Proc. of IJCAI-07 (2007)

11. Lutz, C., Wolter, F.: Conservative extensions in the lightweight description logic
EL. In: Proc. of CADE-21 (2007)

12. Malone, J., Holloway, E., Adamusiak, T., Kapushesky, M., Zheng, J., Kolesnikov,
N., Zhukova, A., Brazma, A., Parkinson, H.E.: Modeling sample variables with an
experimental factor ontology. Bioinformatics 26(8), 1112–1118 (2010)

13. Ren, Y., Pan, J.Z., Zhao, Y.: Soundness Preserving Approximation for TBox Rea-
soning. In: Proc. of AAAI-10 (2010)

14. Sattler, U., Schneider, T., Zakharyaschev, M.: Which kind of module should I
extract? In: Proc. of DL-09 (2009)

