
A Decidable Extension of SRIQ with
Disjunctions in Complex Role Inclusion Axioms

Milenko Mosurović1, Henson Graves2, and Nenad Krdžavac3

1 Faculty of Mathematics and Natural Science, University of Montenegro, Podgorica,
ul. Džordža Vašingtona bb, 81000 Podgorica, Montenegro.

milenko@ac.me
2 Algos Associates, 2829 West Cantey Street, Fort Worth, TX 76109 United States

henson.graves@hotmail.com
3 Department of Accounting and Information Systems, College of Business and Law,

University College Cork, Cork City, Ireland.
N.Krdzavac@ucc.ie

Abstract. This paper establishes the decidability of SR⊔IQ which has
composition-based role Inclusion axioms (RIAs) of the form R1 ◦ · · · ◦
Rn⊑̇T1 ⊔ · · · ⊔ Tm. Also the consistency of an Abox A of SR⊔IQ DL
w.r.t. Rbox R is established. Motivation for this kind of RIAs comes from
applications in the field of manufactured products as well as other con-
ceptual modeling applications such as family relationships. The solution
is based on a tableau algorithm.

Keywords: Description Logic, Manufacturing system,Tableau, Composition-
based Role Inclusion Axiom.

1 Introduction

Description logic (DL) [1] has focused on extending decidability results to DLs
with more complex RIAs [6, 7, 9]. However, the logic SROIQ DL which is logi-
cal basis for the standard Ontology Web Language OWL 2 [3], does not admit
assertions which have role unions on the right hand side of RIAs. Many applica-
tions involve RIAs with role unions on the right side. For example in modeling
an engine in a car that can power wheelInCar or oilPump or generator, or all
of these, at the same time [8, 2]. This model can be described in the following
composition-based RIAs [11]:

engineInCar ◦ powers ⊑ wheelInCar ⊔ generatorInCar ⊔ oilPunInCar (1)

One can conclude that for an individual car c1 and an individual p1: if p1 is
powered by an individual engine e1 in the car c1 then p1 is an individual wheel
or a generator or an oilpump in c1. The RIA of the form (1) ca be expressed
in an extension of ALC DL with composition-based RIAs [11], but SROIQ
DL does not support such composition-based RIAs. Modeling such RIAs in the

extensions of ACL DL considered only two roles on the left hand side of the
RIAs. This paper introduces the SR⊔IQ DL that extends SRIQ DL [5] with
composition-based RIAs of the form (2). As noted in [11] the RIA of the form
(2) are not role value-maps [10]. The logic analyzed in this paper overcomes the
following shortcomings of the logics studied in [11]:

1. Finite automata handle composition-based RIAs of the form (2).
2. Does not require a Rbox to be admissible [11],
3. Does not require all roles to be disjoint [11],
4. Allows more than two roles on the left hand side of composition-based RIAs.

The rest of the paper is organized as follows. Next section gives definition of
SR⊔IQ DL. Section 3 defines tableau for SR⊔IQ and proves decidability of
the logic. The section also gives and example of tableau for RIA of the form (2).
The last section concludes the paper.

2 Preliminaries

The alphabet of SRIQ and SR⊔IQ DL consists of set of concept names NC ,
set of role names NR, set of simple role names NS ⊂ NR and finally, a set of
individual names NI . The set of roles is NR ∪ {R−|R ∈ NR} and on this set the
function Inv(·) is defined as Inv(R) = R− and Inv(R−) = R for R ∈ NR. A
role chain is a sequence of roles w = R1R2 . . . Rn.

SR⊔IQ language is an extension of SRIQ [5], by allowing new kinds of
RIAs in role hierarchy. The syntax of the SR⊔IQ DL concepts, Rbox, Tbox
and Abox are given in definitions 1, 2 and 3 following [5].

Definition 1. Set of SR⊔IQ concepts is a smallest set such that

– every concept name and ⊤, ⊥ are concepts, and,
– if C and D are concept and R is a role, S is simple role, n is non-negative

integer, then ¬C, C⊓D, C⊔D, ∀R.C, ∃R.C, ∃S.Self , (≤ nS.C), (≥ nS.C)
are concepts.

A general concept inclusion axiom (GCI) is an expression of the form C⊑̇D for
two SR⊔IQ-concepts C and D. A Tbox T is a finite set of GCIs.
An individual assertion has one of the following forms: a : C, (a, b) : R, (a, b) :
¬S, or a ˙̸=b, for a, b ∈ NI (the set of individual names), a (possibly inverse) role
R, a (possibly inverse) simple role S, and a SR⊔IQ-concept C. A SR⊔IQ-Abox
A is a finite set of individual assertions.

A (composition-based) RIA is a statement of the form [11]:

R1 · · ·Rn⊑̇T1 ⊔ · · · ⊔ Tm. (2)

Without additional restrictions on RIAs, some DLs [11] with composition-
based RIAs are undecidable.

Definition 2. Strict partial order ≺ (irreflexive, transitive, and antisymmetric),
on the set of roles, provides acyclicity [5]. Allowed RIAs in SRIQ DL with
respect to ≺, are expressions of the form w⊑̇R, where [4, 5]:

1. R is a simple role name, w = S is a simple role, and S ≺ R or S = R− or
2. R ∈ NR\NS is a role name and

w = RR, or
w = R−, or
w = S1 · · ·Sn and Si ≺ R, for 1 ≤ i ≤ n, or
w = RS1 · · ·Sn and Si ≺ R, for 1 ≤ i ≤ n, or
w = S1 · · ·SnR and Si ≺ R, for 1 ≤ i ≤ n

A SRIQ role hierarchy is a finite set R1
h of RIAs. A SRIQ role hierarchy R1

h is
regular if there exists strict partial order ≺ such that each RIA in R1

h is allowed
with respect to ≺ [4, 5].

Definition 3. A SR⊔IQ role hierarchy is a finite set Rh = R1
h ∪ R2

h, where
R1

h is SRIQ role hierarchy and R2
h is set of RIA Ri1 · · ·Rini ⊑ Ti1 ⊔ · · · ⊔Timi ,

and Tij are not simple roles, for i = 1, . . . , k. A SR⊔IQ role hierarchy Rh is
regular if R1

h is regular and Tij does not appear on the left hand side of RIAs in
Rh. A SR⊔IQ set of role assertions is a finite set Ra of the assertions Ref(R),
Irr(S), Sym(R), Tra(V), and Dis(T, S), where R is a role, S, T are simple
roles and V is not simple role [5]. A SR⊔IQ Rbox R = Rh ∪ Ra, where Rh is
SR⊔IQ role hierarchy and Ra is a set of role assertions.

If R1
h is regular w.r.t strict partial order ≺ then we extend ≺ such that Rij ≺ Til

hold, i = 1, . . . , k and j = 1, . . . , ni, l = 1, . . . ,mi. Further, we assume that
labels, such as k, ni, mi, Til, Rij , have the same meaning as defined in definition
3.

Definition 4. The semantics of the SR⊔IQ DL is defined by using interpre-
tation. An interpretation is a pair I = (∆I , ·I), where ∆I is a non-empty set,
called the domain of the interpretation. A valuation ·I associates: every con-
cept name C with a subset CI ⊆ ∆I ; every role name R with a binary relation
RI ⊆ ∆I ×∆I and, every individual name a with an element aI ∈ ∆I [1].

Definition 5. An interpretation I extends to SR⊔IQ complex concepts and
roles according to the following semantic rules:

– If R is a role name, then (R−)I = {⟨x, y⟩ : ⟨y, x⟩ ∈ RI},
– If R1, R2,. . . , Rn are roles then (R1R2 . . . Rn)

I = (R1)
I ◦(R2)

I ◦· · ·◦(Rn)
I

and (R1 ⊔R2 ⊔ . . . ⊔Rn)
I = (R1)

I ∪ (R2)
I ∪ · · · ∪ (Rn)

I , where sign ◦ is a
composition of binary relations,

– If C and D are concepts, R is a role, S is a simple role and n is a non-
negative integer, then 4

⊤I = ∆I ,⊥I = ∅, (¬C)I = ∆I\CI , (C ⊓D)I = CI ∩DI ,
(C ⊔D)I = CI ∪DI , (∃R.C)I = {x : ∃y. ⟨x, y⟩ ∈ RI ∧ y ∈ CI},

4 ♯M denotes cardinality of set M .

(∃S.Self)I = {x : ⟨x, x⟩ ∈ SI}, (∀R.C)I = {x : ∀y. ⟨x, y⟩ ∈ RI ⇒ y ∈ CI},
(≥ nS.C)I = {x : ♯{y : ⟨x, y⟩ ∈ SI , y ∈ CI} ≥ n},
(≤ nS.C)I = {x : ♯{y : ⟨x, y⟩ ∈ SI , y ∈ CI} ≤ n}.

Inference problems for SR⊔IQ are defined in standard way [5].

Definition 6. An interpretation I satisfies a RIA R1 · · ·Rn⊑̇T1 ⊔ · · · ⊔ Tm, if
RI

1 ◦ · · · ◦RI
n ⊆ T I

1 ∪ · · · ∪ T I
m. An interpretation I is model of a

– Tbox T (written I |= T) if CI ⊆ DI for each GCI C⊑̇D in T .
– role hierarchy Rh, if it satisfies all RIAs in Rh (written I |= Rh).
– role assertions Ra (written as I |= Ra) if I |= Φ holds for each role assertion

axiom Φ ∈ Ra, where is I |= Dis(S,R) if SI ∩RI = ∅,
I |= Sym(R) if RI is symmetric relation , I |= Tra(R) if RI is transitive
relation ,
I |= Ref(R) if RI is reflexive relation, I |= Irr(S) if RI is irreflexive
relation.

– Rbox R = ⟨Rh,Ra⟩ (written as I |= R) if I |= Rh and I |= Ra.
– Abox A (I |= A) if for all individual assertions ϕ ∈ A we have I |= ϕ, where

I |= a : C if aI ∈ CI , I |= a ˙̸=b if aI ̸= bI ,
I |= (a, b) : R if

⟨
aI , bI

⟩
∈ RI , I |= (a, b) : ¬R if

⟨
aI , bI

⟩
/∈ RI .

For an interpretation I, an element x ∈ ∆I is called an instance of a concept
C if x ∈ CI . An Abox A is consistent with respect to a Rbox R and a Tbox T if
there is a model I for R and T such that I |= A.

Definition 7. A concept C is called satisfiable if there is an interpretation I
with CI ̸= ∅. A concept D subsumes a concept C (written C⊑̇D) if CI ⊆ DI

holds for each interpretation. Two concepts are equivalent (written C ≡ D) if
they are mutually subsuming.

All standard inference problems for SR⊔IQ-concepts and Abox can be re-
duced [5] to the problem of determining the consistency of a SR⊔IQ-Abox w.r.t.
a Rbox, where we can assume w.l.o.g. that all role assertions in the Rbox are of
the form Dis(S,R). We call such Rbox reduced.

3 The Extension of SRIQ Tableau

Let A be a SR⊔IQ-Abox and R a reduced SR⊔IQ-Rbox and let RA be a set
of role names appearing in A and R, including their inverse, and IA is the set of
individual names appearing in A. To check whether Abox A is consistent w.r.t.
Rbox R we transform SR⊔IQ-Rbox R to SRIQ-Rbox R′ as follows:

1. For each role name R ∈ RA we define equivalence class [R] = {R} and set
[R−] = [R]−, comp([R]) = {R}, comp([R−]) = {R−},

2. For each RIA of the form Ri1 · · ·Rini ⊑ Ti1 ⊔ · · · ⊔ Timi ∈ R (1 ≤ i ≤ k) we
define equivalence class [Ti1⊔· · ·⊔Timi] = {Tj1⊔· · ·⊔Tjmj | {Ti1, . . . , Timi} =
{Tj1, . . . , Tjmj}, 1 ≤ j ≤ k} and set comp([Ti1⊔· · ·⊔Timi]) = {Ti1, . . . , Timi}

Mary

{∀hGm.W,∀hGm.G, ∀hGf.M, ∀hGf.B} ⊆ L(Mary)

Mary{∀hP.∀hP.(Z1 ∨ Z2)}

Parent1Z1 = (hGm, {W,G}, ∅) Parent1

Z2 = (hGf, {M,B}, ∅)

xZ1 ∨ Z2 x

{W,G} ⊆{ W,G,B,¬M}

hP

hGm

hP

Fig. 1. A part of tableau for (3) and (4)

3. We consider equivalence classes [R], previously defined, as role names which
do not appear in RA. Set of the role names is denoted with R′

A. Let’s define
R′ = {[R1] · · · [Rn]⊑̇[T1 ⊔ · · · ⊔ Tm] | R1 · · ·Rn⊑̇T1 ⊔ · · · ⊔ Tm ∈ R}.

If Rbox R is regular w.r.t order ≺ then Rbox R′ is regular w.r.t ≺′ defined
as follows [R] ≺′ [S] iff R ≺ S and [Tij] ≺′ [Ti1 ⊔ · · · ⊔ Timi], j = 1, ...,mi,
i = 1, ..., k. Equivalence classes and order ≺′ previously defined are using for
automata construction. For the following example of RIAs R1R2 ⊑ H1 ⊔ H−

2

and S1S2 ⊑ H−
2 ⊔H1 one should construct a nondeterministic finite automaton

(NFA) for role [H1 ⊔H−
2]. The automaton should accept words R1R2 and S1S2.

Namely, for every role [R] we have kept the construction of NFA B[R] based on
R′, as same as defined in [5]. For B an NFA and q a state of B, Bq denotes the
NFA obtained from B by making q the (only) initial state of B [5]. The language
recognized by NFA B is denoted by L(B).

To illustrate main idea in this paper, we use the following simple example.

Example 1. In this example we use the following abbreviations: hP = hasPare-
nt, hGm = hasGrandMother, hGf = hasGrandFather,W = Woman,M =
Man,G = Gentle,B = Blabber. We defined the following RIA:

hP ◦ hP ⊑ hGm ⊔ hGf (3)

and the individual assertion:

Mary : ∀hGm.W ⊓ ∀hGf.M ⊓ ∀hGm.G ⊓ ∀hGf.B (4)

We should decide whether x (see Fig. 1) is instance of GrandMother or
GrandFather. If x ∈ GrandMotherI then x ∈ W I , x ∈ GI . In the case of
(Mary, x) ∈ hGmI , it does not break syntax rules. Similar to this one, if x ∈
GrandFatherI then x ∈ MI , x ∈ BI and (Mary, x) ∈ hGfI hold. Meta-
labels Z1 and Z2 are using to remember the (relevant) parts of the labels in the

node Mary which should be transferred from the node to node x (see Fig. 1).
First component in Z1 is role. The second component is the set of the concepts
{C|Mary is instance of concept ∀hGm.C}. The third component is the set of
concepts, for which Mary is instance and should be superset of the set {C|x
is instance of concept ∀hGm−.C}. Because of inverse role we need first and
third component. To choose given meta-label, we note as Z1 ∨ Z2. To recognize
path hP ◦ hP from node Mary to x we use NFA B[hGm⊔hGf] noted as follows
∀B[hGm⊔hGf].(Z1 ∨ Z2). �

We assume that all concepts are in negation normal form (NNF). For given
concept C0, clos(C0) is the smallest set that contains C0 and that is closed under
sub-concepts and ¬̇. We use ¬̇C for NNF of ¬C [5]. We use two sets of the label
of nodes. First set is [5]: clos(A) := ∪a:C∈Aclos(C). The second set is:
NFAclos(A,R) := {∀Bq

[R].Z| [R] ∈ R′
A and q is state in NFA B[R] and

Z =
∨

T∈comp([R])(T,ZT , ẐT), ZT ⊆ clos(A)|T , ẐT ⊆ clos(A)|T−}, where
clos(A)|Q = {C | ∀Q.C ∈ clos(A)}.

In the proofs of decidability we use set PL(B[R]) =
{
⟨w′, q⟩ |q is a state in

B[R], (∀w′′ ∈ L(Bq
[R]))

(
w′w′′ ∈ L(B[R])

)}
. Set PL(B[R]) contains pairs of the

form (w′, q). First component w′ is prefix of a word w ∈ L(B[R]), but the second
component q is a state of automaton B[R] which can be reached if input word
for the automaton has prefix w′.

Definition 8. T = (S,L,L, E ,J) is a tableau for A with respect to R iff a) S
is non-empty set, b) L : S → 2clos(A), c) L : S → 2NFAclos(A,R), d) J : IA → S,
e) E : RA → 2S×S.
Furthermore, for all C,C1, C2 ∈ clos(A); s, t ∈S; R,S ∈ RA, and a, b ∈ IA, the
tableau T satisfies:

– (P1a) If C ∈ L(s), then ¬ C /∈ L(s) (C is atomic, or ∃R.Self),
– (P1b) ⊤ ∈ L(s), and ⊥ /∈ L(s), for all s,
– (P1c) If ∃R.Self ∈ L(s), then ⟨s, s⟩ ∈ E(R),
– (P2) if (C1 ⊓ C2) ∈ L(s), then C1 ∈ L(s) and C2 ∈ L(s),
– (P3) if (C1 ⊔ C2) ∈ L(s), then C1 ∈ L(s) or C2 ∈ L(s),
– (P5) if ∃S.C ∈ L(s), then there is some t with ⟨s, t⟩ ∈ E(S) and C ∈ L(t),
– (P7) ⟨x, y⟩ ∈ E(R) iff ⟨y, x⟩ ∈ E(Inv(R)),
– (P8) if (≤ nS.C) ∈ L(s), then ♯ST (s, C) ≤ n,
– (P9) if (≥ nS.C) ∈ L(s), then ♯ST (s, C) ≥ n,
– (P10) if (≤ nS.C) ∈ L(s) and ⟨s, t⟩ ∈ E(S), then C∈ L(t) or ¬̇C ∈ L(t),
– (P11) if a : C ∈ A, then C ∈ L(J (a))
– (P12) if (a, b) : R ∈ A, then (J (a),J (b)) ∈ E(R),
– (P13) if (a, b) : ¬R ∈ A, then (J (a),J (b)) /∈ E(R),
– (P14) if a ˙̸=b ∈ A, then J (a) ̸= J (b),
– (P15) if Dis(R,S) ∈ R, then E(R) ∩ E(S) = ∅,
– (P16) if ⟨s, t⟩ ∈ E(R) and R ⊑∗ S, then ⟨s, t⟩ ∈ E(S),5

5 ⊑∗ is the transitive closure of ⊑ [5]

– (P6’) ∀B[R].Z ∈ L(s), where 6 Z =
∨

Q∈comp([R])(Q,ZQ, ẐQ), ZQ = L(s)|Q =

{C|∀Q.C ∈ L(s)} and ẐQ = L(s)∩ clos(A)|Q− , for all s ∈ S and [R] ∈ R′
A,

– (P4a’) if ∀Bp.Z ∈ L(s), ⟨s, t⟩ ∈ E(S), and p
S→ q ∈ Bp, then ∀Bq.Z ∈ L(t),

– (P4b’) if ∀Bp.Z ∈ L(s), ε ∈ L(Bp), and Z =
∨l

j=1(Qj , Zj , Ẑj) then there is

j0, such that Zj0 ⊆ L(s), L(s)|Q−
j0

⊆ Ẑj0

where in (P8) and (P9),
ST (s, C) = {t ∈ S| ⟨s, t⟩ ∈ E(S′

), for some S
′ ∈ L(BS) and C ∈ L(t)}�.

Lemma 1. SR⊔IQ-Abox A is consistent w.r.t. R iff there exists a tableau for
A w.r.t. R.

Proof. (⇐)Let T = (S,L,L, E ,J) be a tableau for A with respect to R. An
interpretation I = (∆I , ·I) of A and R can be defined as follows: ∆I := S,
CI := {s|C ∈ L(s)}, for a concept name C ∈ clos(A), aI := J (a) for an
individual name a ∈ IA and for a role name [Q] ∈ R′

A, R ∈ RA, we set E([Q]) :=
{⟨s0, sn⟩ ∈ ∆I×∆I | there are s1, · · · , sn−1 with ⟨si, si+1⟩ ∈ E(Si+1), for 0 ≤ i ≤
n − 1 and S1S2 · · ·Sn ∈ L(B[Q])}, RI := {⟨x, y⟩ ∈ ∪R∈comp([Q])E([Q])|L(x)|R ⊆
L(y) and L(y)|R− ⊆ L(x)}.

We have to show that I is a model for A and R.
Next, we show that I is model for R. I |= Ra can be proved by using the same
method as in [5]. Let’s consider a RIA of the form R1 · · ·Rn⊑̇T1⊔· · ·⊔Tm. Let’s
⟨x0, xn⟩ ∈ (R1 · · ·Rn)

I . According to semantic rules, there are x1, ..., xn−1 such
that ⟨xi, xi+1⟩ ∈ RI

i+1, for i = 0, 1, ..., n−1. As roles Tij do not appear on the left

hand side of RIAs then Ri ∈ comp([Q]) only for Q = Ri i.e. R
I
i ⊆ E([Ri]). This

means that there are yi0 = xi, yi1,...,yili = xi+1 such that ⟨yij , yij+1⟩ ∈ E(Sij+1)
and Si1 · · ·Sili ∈ L(B[Ri+1]). According to automata construction, we have the

following: S11 · · ·S1l1S21 · · ·Snln ∈ L(B[T1⊔···⊔Tm]) so ⟨x0, xn⟩ ∈ E([T1⊔· · ·⊔Tm]).

On the other side, according to rule (P6’), the following ∀B[T1⊔···⊔Tm].Z ∈ L(x0)

holds, where Z =
∨m

j=1(Tj , ZTj
, ẐTj

). By S11 · · ·Snln ∈ L(B[T1⊔···⊔Tm]) and rule

(P4a’) we have ∀Bq
[T1⊔···⊔Tm].Z ∈ L(xn) and ε ∈ L(Bq

[T1⊔···⊔Tm]). From (P4b’) we

have that there is j such that L(x0)|Tj = ZTj ⊆ L(xn) and L(xn)|T−
j

⊆ ẐTj ⊆
L(x0), i.e. ⟨x0, xn⟩ ∈ T I

j . Therefore ⟨x0, xn⟩ ∈ (T1 ⊔ · · · ⊔ Tm)I .
Secondly, we prove that I is model for A. We show that C ∈ L(s) implies

s ∈ CI for each s ∈ S and each C ∈ clos(A). Together with (P11)-(P14), this
implies that I is a model for A [5]. Consider the case C ≡ ∀R.D. For the other
cases, see [5].
Let ∀R.D ∈ L(s) and ⟨s, t⟩ ∈ RI . If R is role name then according to definition
RI there exists [Q] such that R ∈ comp([Q]), ⟨s, t⟩ ∈ E([Q]) and L(s)|R ⊆ L(t). If
R = S−, where S role name, then according to definition SI there exists role [Q]
such that S ∈ comp([Q]), ⟨t, s⟩ ∈ E([Q]) and L(s)|S− ⊆ L(t) (i.e. L(s)|R ⊆ L(t)).
In both cases we have D ∈ L(t). By induction, t ∈ DI and thus s ∈ (∀R.D)I .

6 Rules (P6), (P4a) and (P4b) in [5] are changed with rules (P6’), (P4a’) and (P4b’).

(⇒) For the converse, suppose I = (∆I , ·I) is a model for A w.r.t. R. We
define tableau T = (S,L,L, E ,J) as follows:
S := ∆I , J (a) := aI , E(R) := RI , L(s) := {C ∈ clos(A)}|s ∈ CI}
L(s) := {∀Bq

[R].Z|(∃t ∈ ∆I)(∃w′)∀B[R].Z ∈ L1(t), ⟨w′, q⟩ ∈ PL(B[R]) and ⟨t, s⟩ ∈
(w′)I}, where L1(s) := {∀B[R].Z|Z =

∨
Q∈comp([R])(Q,L(s)|Q,L(s)∩clos(A)|Q−)}.

We have to prove that T is tableau for A w.r.t R. We restrict our attention
to the only new cases. For the other cases, see [5].
The rule (P6’) follows immediately from the definition of L1(s) and L1(s) ⊆ L(s)
(for t = s and w′ = ε).
For (P4a′), let’s ∀Bp

[R].Z ∈ L(s), ⟨s, t⟩ ∈ E(S). Assume that there is a transition

p
S→ q ∈ Bp

[R]. From definition L(s) there exists v ∈ ∆I and w′ such that

∀B[R].Z ∈ L1(v), ⟨w′, p⟩ ∈ PL(B[R]) and ⟨v, s⟩ ∈ (w′)I . Let’s w′′ = w′S then

⟨w′′, q⟩ ∈ PL(B[R]) and ⟨v, t⟩ ∈ (w′′)I , so ∀Bq
[R].Z ∈ L(t).

For (P4b’), let’s ∀Bp
[R].Z ∈ L(s), ε ∈ L(Bp

[R]), and Z =
∨l

j=1(Qj , Zj , Ẑj). By

definition L(s) there exists x ∈ ∆I and w′ such that ∀B[R].Z ∈ L1(x), ⟨w′, q⟩ ∈
PL(B[R]) and ⟨x, s⟩ ∈ (w′)I . Further, we have [R] = [Q1 ⊔ · · · ⊔ Ql], Zj =

L(x)|Qj and Ẑj = L(x) ∩ clos(A)|Q−
j
. By ε ∈ Bp

[R] we have w′ ∈ L(B[R]), so

w′I ⊆ (Q1 ⊔ · · · ⊔Ql)
I , i.e. ⟨x, s⟩ ∈ (Q1 ⊔ · · · ⊔Ql)

I . This means that there is j
such that ⟨x, s⟩ ∈ QI

j . By the rules of semantics and the definition of L(s), we
have Zj = L(x)|Qj ⊆ L(s) and L(s)|Q−

j
⊆ L(x) ∩ clos(A)|Q−

j
= Ẑj �.

Tableau algorithm for SR⊔IQ DL works on the completion forest on similar
manner as described in [5].

Definition 9. (Completion forest) Completion forest for a SR⊔IQ-Abox A and
a Rbox R is a labeled collection of trees G = (V,E,L,L, ˙̸=) whose distinguished
root nodes can be connected arbitrarily, where each node x ∈ V is labeled with
two sets L(x) ⊆ clos(A) and L(x) ⊆ NFAclos(A,R). Each edge ⟨x, y⟩ ∈ E is
labeled with a set L(⟨x, y⟩) ⊆ RA. Additionally, we care of inequalities between
nodes in V , of the forest G, with a symmetric binary relation ˙̸=.
If ⟨x, y⟩ ∈ E, then y is called successor of the x, but x is called predecessor of y.
Ancestor is the transitive closure of predecessor, and descendant is the transitive
closure of successor. A node y is called an R-successor of a node x if, for some
R′ with R′ ⊑∗ R, R′ ∈ L(⟨x, y⟩). A node y is called a neighbor (R-neighbor) of
a node x if y is a successor (R-successor) of x or if x is a successor (Inv(R)-
successor) of y. For S ∈ RA, x ∈ V , C ∈ clos(A) we define set SG(x,C) = {y|y
is S − neighbour of x and C ∈ L(y)}

Definition 10. A completion forest G is said to contain a clash if there is a
node x such that:

– ⊥ ∈ L(x), or
– for a concept name A, {A,¬A} ⊆ L(x), or
– x is an S-neighbor of x and ¬∃S.Self ∈ L(x), or

– x and y are root nodes, y is an R-neighbor of x, and ¬R ∈ L(⟨x, y⟩), or
– there is some Dis(R,S) ∈ Ra and y is an R and an S-neighbor of x, or
– there exists a concept (≤ nS.C) ∈ L(x) and {y0, . . . , yn} ⊆ SG(x,C) with

yi ˙̸=yj for all 0 ≤ i < j ≤ n,

– there is ∀Bp.Z ∈ L(x), with ε ∈ L(Bp), Z =
∨l

j=1(Qj , Zj , Ẑj) and there are

no j such that L(x)|Q−
j
⊆ Ẑj.

A completion forest that does not contain a clash is called clash-free. ⊓⊔

The blocking is employed in order to have termination [5].

Definition 11. A node is called blocked if it is either directly or indirectly
blocked [5]. A node x is directly blocked if none of its ancestors are blocked,
and it has ancestors x′, y and y′ such that [5]:

– none of x′, y and y′ is a root node,
– x is a successor of x′ and y is a successor of y′, and
– L(x) = L(y) and L(x′) = L(y′), and
– L(x) = L(y) and L(x′) = L(y′), and
– L(⟨x′, x⟩) = L(⟨y′, y⟩).

In this case we say that y blocks x. A node y is indirectly blocked if one of its
ancestors is blocked [5].

The non-deterministic tableau algorithm can be described as follows:

– Input: Non-empty SR⊔IQ-Abox A and a reduced Rbox R
– Output: ”Yes” if SR⊔IQ-Abox A is consistent w.r.t. Rbox R, otherwise

”No”
– Method:

1. step: Construct completion forest G = (V,E,L,L, ˙̸=) as follows:
• for each individual a occurring in A, V contains a root node xa,
• if (a, b) : R ∈ A or (a, b) : ¬R ∈ A, then E contains an edge ⟨xa, xb⟩,
• if a ˙̸=b ∈ A, then xa

˙̸=xb is in G,
• L(xa) := {C|a : C ∈ A},
• L(xa) := ∅,
• L(⟨xa, xb⟩) := {R|(a, b) : R ∈ A} ∪ {¬R|(a, b) : ¬R ∈ A}

Go to step 2.
2. step: Apply an expansion rule (see table 1) to the forest G, while it is

possible. Otherwise, go to step 3.
3. step: If the forestG does not contain clash return ”Yes”, otherwise return

”No”.

Lemma 2. Let A be a SR⊔IQ-Abox and R a reduced Rbox. The tableau algo-
rithm terminates when started for A and R.

Lemma 3. Let A be a SR⊔IQ-Abox and R a reduced Rbox. Tableau algorithm
returns answer ”Yes” if and only if there is a tableau for A w.r.t. R.

Table 1. Expansion rules for SR⊔IQ tableau algorithm (updated from [5])

The rules ⊓, ⊔, ∃, Self, ≤r, ≥, ≤
are defined in [5], but only in rules that create new node y should set L(y) := ∅

ch′ If x is not indirectly blocked and
there is concept C ∈ clos(A) with {C, ¬̇C} ∩ L(x) = ∅
then L(x) → L(x) ∪ {E}, for some E ∈ {C, ¬̇C}

∀′
1 If x is not indirectly blocked and it is not possible to apply ch′-rule to L(x),

and ∀B[R].Z /∈ L(x), where Z =
∨

Q∈comp([R])(Q,L(x)|Q,L(x) ∩ clos(A)|Q−)

then L(x) → L(x) ∪{∀B[R].Z}
∀′
2 If ∀Bp.Z ∈ L(x), and x is not indirectly blocked, p

S→ q ∈ Bp and

there is S-neighbor y of x with ∀Bq.Z /∈ L(y)
then L(y) → L(y)∪ {∀Bq.Z}

∀′
3 If ∀Bp.Z ∈ L(y), and y is not indirectly blocked, ε ∈ L(Bp),

Z =
∨l

j=1(Qj , Zj , Ẑj) and there is no j such that Zj ⊆ L(y) and L(y)|
Q−

j
⊆ Ẑj

then choose j such that L(y)|
Q−

j
⊆ Ẑj and L(y) → L(y) ∪ Zj .

Proof. For the if direction, suppose that the algorithm returns ”Yes”. It means
that the algorithm generated completion forest G = (V,E,L,L, ˙̸=) without clash
and there are no expansion rules (see table 1) that can be applied.

Let’s b(x) = x, if x is not blocked and b(x) = y, if y blocks node x.
A path [6] is a sequence of pairs nodes of G of the form

p = ⟨(x0, x
′
0), . . . , (xn, x

′
n)⟩ . (5)

For such a path, we define Tail(p) = xn and Tail′(p) = x′
n. We denote the path⟨

(x0, x
′
0), (x1, x

′
1), . . . , (xn, x

′
n), (xn+1, x

′
n+1)

⟩
(6)

with
⟨
p|(xn+1, x

′
n+1)

⟩
. The set of Paths(G) can be defined inductively as follows:

– if x0 is root node then ⟨x0, x0⟩ ∈ Paths(G)
– if p ∈ Paths(G), z ∈ V and z is not indirectly blocked, such that ⟨Tail(p), z⟩ ∈

E, then (p, ⟨b(z), z⟩) ∈ Paths(G)

We define structure T = (S,L,L, E ,J) as follows S := Paths(G), L(p) :=
L(Tail(p)), L(p) := L(Tail(p)), if root node xa denotes individual a then J (a) =
(⟨xa, xa⟩) and E(R) := {⟨s, t⟩ ∈ S × S|t = (s, ⟨b(y), y⟩) and y is an R −
successor of Tail(s) or s = (t, ⟨b(y), y⟩) and y is an Inv(R)−successor of Tail(t)}
∪{⟨J (a),J (b)⟩ |xb is an R-neighbour of xa}.

Thus defined structure T is a tableau. New rules (P6’), (P4a’) directly follows
from ∀′1 and ∀′2 rule, but (P4b’) follows from ∀′3 and definition of clash (see
definition (10)). For the other cases, see [6].

For the only-if direction, the proof is the same as proof in [4, 5] (i.e., we take
a tableau and use it to steer the application of the non-deterministic rules).�

From Theorem 1 in [5] and Lemmas 1, 2 and 3, we thus have the following
theorem:

Theorem 1. The tableau algorithm decides satisfiability and subsumption of
SR⊔IQ-concepts with respect to Aboxes, Rboxes, and Tboxes.

4 Conclusion

It is important to note that original idea of extension ALC DL with composition-
based RIAs is presented in [11]. We introduce more expressive formalism that
allows composition-based RIAs and relaxed restrictions defined in [11]. Moti-
vated by practical applications in manufacturing engineering we define tableau
algorithm in order to check satisfiability of SR⊔IQ DL. Future research will be
focused on how to extend regularity conditions for SROIQ DL in order to sup-
port composition-based RIAs as well as at the same time support RIAs proposed
in [9]. We use the algorithm proposed in this paper for modeling the regulations
of capital adequacy of credit institutions.

References

1. Baader, F. Calvanese, D., McGuinness, D., Nardi D., Patel-Schneider, P.: The
description logic handbook - theory, implementation and application. Cambridge
University Press, second edition (2007)

2. Bock, C., Zha, X., Suh, H., Lee, J.: Ontological product modeling for collaborative
design. Advanced Engineering Informatics 24 (2010) 510-524

3. Grau, B. C., Horrocks, I., Motik, B., Parsia, B., Schneider, P. P., Sattler, U: OWL
2: The next step for OWL, Journal of Web Semantics: Science, Services and Agents
on the World Wide Web 6(4) (2008) 309-322

4. Horrocks, I., Sattler, U.: Decidability of SHIQ with complex role inclusion axioms.
Artificial Intelligence 160(1-2) (2004) 79-104

5. I. Horrocks, O. Kutz, and U. Sattler. The irresistible SRIQ. In Proceedings of
the OWLED*05 Workshop on OWL: Experiences and Directions and Technical
Report, 2005. http://www.cs.man.ac.uk/~sattler/publications/sriq-tr.pdf

6. Horrocks, I., Kutz, O., Sattler, U.: The even more irresistible SROIQ. In Pro-
ceedings of the 10th International Conference on Principles of Knowledge Repre-
sentation and Reasoning (KR 2006). (2006) 57-67

7. Kazakov, Y.: An extension of complex role inclusion axioms in the description logic
SROIQ. In Proceedings of the 5th International Joint Conference on Automated
Reasoning (IJCAR 2010), Edinburgh, UK. (2010) 472-487

8. Krdžavac, N., Bock, C.: Reasoning in manufacturing part-part examples with
OWL2. U.S. National Institute of Standards and Technology, Technical Report
NISTIR 7535. (2008)

9. Mosurović, M., Krdžavac, N.: A thechnique for handling the right hand side of com-
plex RIA. In Proc. of 24th International Workshop on Description Logics (DL2011),
Barselona, Spain. (2011) 543-554

10. Schmidt-Schaus, M.: Subsumption in KL-ONE is undecidable. In Principle of
Knowledge Representation and Reasoning-Proceedings of the First International
Conference KR89. (1989)

11. Wessel, M.: Obstacles on the way to spatial reasoning with description logics - some
undecidability results. In Proceedings of the International Workshop on Description
Logics 2001 (DL 2001), CEUR Workshop Proceedings. Volume 49., (2001)

