
Partitioning OWL Knowledge Bases - Revisited and
Revised

Sebastian Wandelt1

Institute for Software Systems,
TU Hamburg-Harburg,
wandelt@tuhh.de

Abstract. The development of scalable reasoning systems is one of the
crucial factors determining the success of Semantic Web systems. Re-
cently, in [GH06], an approach is proposed, which tackles the problem
by splitting the assertional part of ontologies into several partitions.
In this work we provide our experiences gained by implementing and
understanding the given partitioning algorithm and fix some issues which
came our way. Furthermore, we propose an extension of the algorithm,
which allows for assertional updates, without need to repartition the
whole knowledge base. Both contributions can hopefully increase the
potential success of partitioning real world ontologies..

1 Introduction

In [GH06], an approach for partitioning large OWL ABoxes with respect to an OWL
TBox is given. The idea is that reasoning can be performed on each partition and the
results can be combined in a particular way to obtain complete answers. The authors
provide a partitioning algorithm for ontologies of expressivity SHIF, which roughly
corresponds to OWL Lite. The idea to partition large ontologies into smaller parts,
which hopefully fit into main memory, is promising and innovative.

Tempted by the nice results reported in [GH06], we attempted to implement the
partitioning approach for further testing of real world ontologies. During our imple-
mentation, we faced several problems, which could be of interest for other possible
implementators and people who are interested in efficient and scalable reasoning on
description logics. This work reports our results in detail.

There were two kinds of problems, which we had to deal with during the imple-
mentation. First, some of definitions/algorithms yield incomplete partitions, i.e. after
the partitioning is performed, information is lost. Second, there are (real world) cases,
which will dramatically increase the average size of partitions. We propose alternatives
to overcome these problems. Furthermore, we noticed that the given partitioning algo-
rithm is subject to a, more or less, straight-forward extension for assertional updates.
After an update of the assertional part of the ontology, our extension only recomputes
the partitions, which were really changed. We think that this makes the partitioning idea
even more interesting for practical settings.

This paper is structured as follows. Section 2 presents summarizing notions for de-
scription logics. In Section 3 we provide relevant notions and main results from [GH06].

We summarize our observations for the original partitioning algorithm in Section 4 and
propose a revised version including assertional updates in Section 5. In Section 6 we
give an example, which should make our extension easy to understand. We conclude
the paper in Section 7 and also point at some ideas for further work.

2 Foundations: Description Logics

In the following, we briefly recall syntax and semantics of the description logic SHIF.
For the details, please refer to [BCM+07]. We assume a collection of disjoint sets: a
set of concept names NC , a set of role names NRN , with a subset NRN+ ⊆ NRN

of transitive role names, and a set of individual names NI . The set of roles NR is
NRN ∪ {R−|R ∈ NRN}. The set of SHIF-concepts is given by by using the grammar:

C ::=>|⊥|D|¬C|C1 u C2|C1 t C2|∀R.C

|∃R.C| ≤1 S| ≥2 S,

where D ∈ NC , R ∈ NR, S ∈ NR (but not transitive) and n ∈ N. We assume the
standard Tarski-style semantics with interpretations I = (∆I , •I). A knowledge base
KB consists of a 3-tuple (T ,R,A), where T is a set of terminological axioms, R is a
set of role axioms and A is a set of assertional axioms.

We define a special kind of partitioning based on explicit role assertions between
individuals in the ABox. Two individuals a and b belong to the same partition, if they are
connected via a path of role assertions, i.e. ∃x1, x2, ...xn such that we have R1(a, x1) ∈
A, R2(x1, x2) ∈ A, ..., Rn−1(xn, b) ∈ A. We call this partitioning method partitioning
based on ABox connectedness. To the best of our knowledge this kind of partitioning is
already implemented in state-of-the-art reasoner.

3 Related work

To make our work self-contained, in the following we provide a summary of the def-
initions and results from [GH06]. Please note that we do not intend to fully recap the
whole paper. For detailed explanations and examples refer to the original work.

Definition 1. [GH06] Given an OWL knowledge base K = 〈T ,R,A〉, a indepen-
dent ABox partitioning of A, is a partitioning ∪iAi, such that for every concept/role
assertion φ, with K |= φ, there exists an Ai, where we have 〈T ,Ai〉 |= φ

Based on a Sequent Calculus inspired approach, the authors derive a set of complete
inference rules for the description logic SHIF. For brevity the list of rules are omitted
here. The basic idea for completeness, but possible unsoundness, is to weaken the left
side of the original inference rules in [RQ93]. For this purpose the authors introduce
three different notions:

Definition 2. [GH06] ∀-Possible(T , R) is true if a concept ∀S.C occurs on the
right hand side of a general concept inclusion (GCI) in T and R v S.

Function BUILD CHUNK GRAPH(KB)
Parameter: Knowledge base KB = 〈T ,A〉
Returns: Chunk graph G forA
Algorithm:

Precompute role relationsships and ∀-Possible, ∃-useful,≤1-Possible
Update G by applying chunk rules 1 and 2
Repeat

1. Update G by applying chunk rule 4
2. Update G and eq by applying chunk rule 3

until neither G nor eq has been changed
Update G by applying chunk rules 5 and 6
return G

Fig. 1. Building a chunk graph

Informally speaking, the rationale of the ∀-Possible constraint is as follows: if a
role R is ∀-Possible then one has to take role assertions R(ai, b) into account when
reasoning over individual b.

Definition 3. [GH06] ∃-useful(T , R) is true if one of the following is true:
1. a concept ∃S.C occurs on the left hand side of some (GCI) in T and R v S
2. there exists S, s.t. ∀-Possible(T , R) is true and R v S

The rationale of the ∃-useful constraint is as follows: if a role is ∃-Useful then one
has to take all role assertions R(a, bi) into account when reasoning over individual a.

Definition 4. [GH06] ≤1-Possible(T , R) is true if a concept ≤1 S occurs on the
right hand side of a general concept inclusion (GCI) in T and R v S.

The rationale of the≤1-Possible constraint is as follows: if a role is≤1-Possible
then one has to put all role assertions R(a, bi) and all concept assertions bi : C into the
same partition. Using the above notions a chunk graph is constructed, which represents
the dependencies between chunks (sets of ABox assertions). For completeness, we re-
peat the notions of a chunk graph and the chunk rules defined in [GH06].

Definition 5. [GH06] A chunk graph G=(V,E) for an ABox A is as follows: 1) Each
vertex of G represents a chunk, which is a subset of A; chunks on G are disjoint. and
their union is A. 2) G is a directed graph and (ck1, ck2) ∈ E means that a partition P
containing chunk ck2 must also contain chunk ck1.

The list of chunk rules is summarized as follows (for details and explanations refer
to [GH06]):

Chunk rule 1: Create a chunk for each individual a inA containing {a : C}a:C∈A. Let
chunk(a) denote the chunk that holds the concept assertions of a.

Chunk rule 2: Create a chunk for each role assertion φ in A. Let chunk(φ) denote the
chunk that contains(φ).

Chunk rule 3: If ≤1-Possible(T , R) and ck1 |= 〈a, b1〉 : R, ck2 |= 〈a, b2〉 : R
then
1. Merge ck1 and ck2 to ck

Function CONSTRUCT PARTITIONS(G)
Parameter: Chunk graph G for KB = 〈T ,A〉
Returns: independent partitioning P ofA
Algorithm:

1. Compact G by merging every set of chunks that form a strongly connected component
2. For every chunk ck that has no outgoing links:

(a) Create a partition p =
S

i cki, where ck is reachable from cki on G (including ck)
(b) P = P ∪ {p}

3. return P

Fig. 2. Constructing relevant partitions

2. Merge chunk(b1) and chunk(b2) to ck′

3. Draw an arc from chunk(a) to ck′

4. Draw an arc from ck to ck′

5. For every role assertion φ involving b1 or b2, draw an arc from ck to chunk(φ)
6. Record the information b1 ≈ b2

Chunk rule 4: For each R ∈ R+, conduct an individual names based merging on
the a set of assertions {〈a, b〉 : R1|R1 v R or R1 = R−} according to the
following principle: For any two of the above assertions phi1 = 〈a, b〉 : R1 and
phi2 = 〈c, d〉 : R2, where a ≈ b or a ≈ d or b ≈ c or b ≈ d, merge chunk(φ1)
and chunk(φ2)

Chunk rule 5: If ∀-Possible(T , R) and ck |= 〈a, b〉R then
1. Draw an arc from chunk(a) to chunk(b)
2. Draw an arc from ck to chunk(b)

Chunk rule 6: If ∃-useful(T , R) and ck |= 〈a, b〉R then
1. Draw an arc from chunk(b) to chunk(a)
2. Draw an arc from ck to chunk(a)

Using the chunk rules, the general algorithm for building a chunk graph is shown
in Figure 1. Finally, Figure 2 shows how to build an independent ABox-partitioning,
given a chunk graph as input.

4 Role Partitioning - Revisited

In the following section we list some observations which we made, while trying to un-
derstand and implement the proposed role partitioning algorithm in [GH06]. Each ob-
servation is accompanied by a detailed description and suggestions how to fix possible
problems.

Observation 1 The constraints ∀-Possible and ∃-useful are in fact equivalent
to each other. That is, both constraints yield the same dependencies between assertions
in an ontology ABox. Moreover, the different handling of both constraints can make the
partitioning too fine and thus incomplete.

This can be shown by a simple example knowledge base KB1 = 〈T ,R,A〉, such that

T = {∃R.¬D v ⊥, ∃S.¬E v ⊥, D u E v F}
R = {}
A = {a : A, b : B, c : C, R(a, b), S(b, c)}

Please note that the roles R and S are ∃-useful, but not ∀-Possible, by definition.
The resulting chunk graph G and the final partitions (marked by fine-dashed circles),
which are obtained by the function CONSTRUCT PARTITIONS(G), are shown
in the picture below:

The algorithm creates two distinct partitions: P1 = {a : A, b : B, R(a, b)} and P2 =
{b : B, c : C,S(c, b)}. It is easy to see that the original knowledge base KB1 entails
the fact b : F . However, none of the two computed partitions entails b : F . To infer
b : F , one needs to have R(a, b) and S(c, b) in the same partition with b : B. Thus the
chunk rules for ∃-useful are not yet sufficient to handle all cases in a complete way.
Please note that the first two TBox-constraints can also be rewritten as ∀-constraints.
The resulting (equivalent) TBox is

Tb = {> v ∀R.D,> v ∀R.E,D u E v F}.

It is interesting to note that the knowledge base KB1b = 〈Tb,R,A〉 (which is semanti-
cally equivalent to KB1) is partitioned correctly. The example shows that ∃-constraints
are not sufficiently considered, but ∀-Possible-constraints are. We fix that problem
by using the following definition:

Definition 6. ∀ext-Possible(T , R) is true if there exists a concept inclusion C v D
in T , such that a concept expression ∀S.X occurs in nnf(¬C ∨D), s.t. R v S and X
is an arbitrary concept expression.

The idea is indeed to treat ∀-Possible and ∃-useful equivalently, because each
TBox-inclusion can be seen as a disjunction. And within the corresponding disjunction,
roles being ∀-Possible and ∃-useful are indistinguishable. With respect to the
chunk rules, we need to apply both rules (Chunk rule 5 and Chunk rule 6) whenever
a role is ∀ext-Possible. That is, whenever two individuals are related by a role R,
s.t. ∀ext-Possible(T , R) is true, we need to create a dependency between the role
assertion and both individuals. For the details of these dependencies see below.

Observation 2 The crucial point of the partitioning algorithm is the number of roles,
which are ∀-Possible, ∃-useful and ≤1-Possible. It is easy to show: if for
each role R in an ontology we can find that R is either ∀-Possible, ∃-useful or

≤1-Possible, then the whole partitioning algorithm degrades to ABox-connectedness
partitions. On the other hand, if only few of the existing roles have these properties,
then the partitioning algorithm works best. As we show below, range- and domain-
restrictions play a crucial role here.

We conducted some research on public available ontologies to determine, how many
roles of an average (randomly chosen) ontology are actually ∀-Possible and ∃-useful.
The result is shown in Figure 3. For detailed information on the chosen ontologies
please refer to the given references. One reason for the high amount of ∀-Possible-

Ontology Nr. of roles ∀-Possible ∃-useful ≤1-Possible
LUBM [GPH05] 25 24 24 0
Galen [RRS+01] 413 136 136 150
Wine [W3C03] 13 10 10 7

GO-Daily [ABB+00] 1 0 0 0
Security [AH07] 28 27 27 7

Fig. 3. Role property statistics for common ontologies

roles are OWL range-restrictions. OWL enables the user to define that all the targets of a
role are of a particular type. The TBox-equivalent for a range-restriction is > v ∀R.C.
Thus, each role, which has an associated range-restriction, becomes ∀-Possible. It
is the same with domain restrictions and ∃-useful. This shows, that a naive imple-
mentation of the partitioning algorithm can yield quite big partitions, much bigger than
shown in [GH06]. In fact, it is possible to optimize the algorithm for domain/range-
restrictions by use of the following definition in the next section.

Definition 7. Role assertion R(a, b) is dom-relevant for individual a, if we have a
domain-restriction on a role S, s.t. R v S. Role assertion R(a, b) is ran-relevant for
individual b, if we have a range-restriction on a role S, s.t. R v S.

Furthermore, we adjust the definition of ∀ext-Possible(T , R) as follows:

Definition 8. ∀ext2-Possible(T , R) is true if there exists a concept inclusion C v
D in T , such that a concept expression ∀S.X occurs in nnf(¬C ∨ D) and R v S,
where X is an arbitrary concept expression and C v D is not caused by a domain or
range restriction.1

The usefulness of our extension can be seen in Figure 4. The columns ∀-Possible
and ∃-useful show the number of roles without taking into account domain- and
range restrictions. For some ontologies, we have a recognizable reduction of ∀-Possible-
roles, especially for LUBM. As we stated earlier, the number of ∀-Possible-roles,
and thus the granularity of the partitioning, is critical for the efficiency of the partition-
ing algorithm.

Ontology Nr. of roles ∀-Possible ∃-useful ≤1-Possible
LUBM 25 4 4 0
Galen 413 136 136 150
Wine 13 7 7 7

GO-Daily 1 0 0 0
Security 28 17 17 7

Fig. 4. Role property statistics without domain/range-restrictions

Chunk rule A:
If≤1-Possible(T , R) and ck1 |= 〈a, b1〉 : R, ck2 |= 〈a, b2〉 : R then

1. Merge ck1 and ck2 to ck
2. Merge chunk(b1) and chunk(b2) to ck′

3. Draw an arc from chunk(a) to ck′

4. Draw an arc from ck to ck′

5. For every role assertion φ involving b1 or b2, draw an arc from ck to chunk(φ)
6. Record the information b1 ≈ b2

Chunk rule B:
For each R ∈ R+, conduct an individual names based merging on the a set of assertions {〈a, b〉 : R1|R1 v
R or R1 = R−} according to the following principle: For any two of the above assertions φ1 = 〈a, b〉 : R1
and φ2 = 〈c, d〉 : R2, where a ≈ b or a ≈ d or b ≈ c or b ≈ d, merge chunk(φ1) and chunk(φ2)

Chunk rule C:
If ∀ext2-Possible(T , R) and ck |= 〈a, b〉 : R then

1. Merge chunk(a) with chunk(b)
2. Draw an arc from ck to chunk(a/b)

Fig. 5. New chunk rules

5 Role Partitioning - Revised

In the following section we present a refinement of the partitioning algorithm in [GH06].
There are two major changes. First, we fix the issues identified in the previous section.
Second, we enable a restricted form of ABox updates on the partitions without having
to recompute the whole chunk graph and all partitions from the scratch. Let us redefine
the relevant notions, e.g. chunks, and give our understanding of the partitioning.

A Chunk is a tuple C = 〈RA, IND〉, where RA : 2NR×NI×NI yields the role
assertions of a chunk and IND : 2NI×NC is the set of individual assertions attached
to a chunk. A chunk graph is a directed graph G = 〈V, E〉, s.t. V ⊆ Chunk and
E ⊆ V × V . The rules for generating a chunk graph are given in Figure 5. As in the
original work we assume that, initially, we have one chunk for each individual and one
chunk for each role assertion in the initial ABox.

Next, we take into account the case of updating an ABox. The idea is as follows:
For each operation on the knowledge base, e.g. adding a new assertion, we keep track of
all possible partitions which might have been changed. Please note that in the original
partitioning algorithm, we have one partition for each chunk c in the chunk graph, s.t.
c has no outgoing edges. Thus, upon updating the chunk graph, we keep track of new
chunks (candidates for new partitions) and also the changes applied to a chunk. For the
rest of this section we denote with anchor a chunk with no outgoing edges.

1 Yuanbo Guo, one of the authors of [GH06], has suggested a similar fix for domain-/range-
restrictions upon personal inquiry

All interaction with the partitions takes place via a structure called PartitionMan-
ager. A PartitionManager is a tuple PM = 〈partitions : Chunk → 2Chunk, candidates :
2Chunk〉, where the element partitions encodes the partitions as follows: for each an-
chor c, partitions(c) yields the chunks from which we can reach c in the chunk graph.
The element candidates is a set of possible anchor chunks. The partition manager de-
fines a set of interface functions for interaction (see Figure 6). Informally speaking,
these functions have the following semantics:

– setTerminologicalKnowledge(T ,R): initializes data structures for the partitioning
algorithm

– addAssertion(φ): adds an ABox assertion to the partition manager
– removeAssertion(φ): removes an ABox assertion from the partition manager
– updatePartitions(): recompute necessary partitions and returns the newly created

partitions (not the old ones which are still valid)
– checkEntailment(a : C): check, whether the a partition of the knowledge base

entails a : C

In the following we will go into the details of the two functions updatePartitions()
and checkEntailment(a : C) only, since the other functions are self-explanatory with
our observations and the descriptions in [GH06].

The idea of the function updatePartitions() is to check for each candidate chunk
c ∈ candidates, whether it is (still) a valid anchor of a partition after applying all the
rules. First, we apply the three chunk rules to the chunk graph exhaustively. Please note
that, usually, after small ABox updates, the rules will be applicable to a small subset of
the existing chunks only (see example below). Since all three chunk rules can invalidate
old partitions, e.g. by adding new arcs to the chunk graph, we need to keep track of the
consequences of rule application w.r.t. our candidate partitions. This is done with two
helper functions in Figure 7: OnMerge is called whenever a chunk rule merges two
chunks and OnNewArc is called whenever a chunk rule adds a new dependency. After
the rule application, the variable candidates contains all chunks which are possibly
anchors for additional partitions. Thus, we only need to check, whether it is an anchor
chunk, i.e. the chunk has no outgoing edges, and then collect all the inverse reachable
chunks (together with all dom-/ran-relevant role assertions). In the end we return all
new partitions.

In function checkEntailment(a : C), we make use of the fact that most of the
partitions are unchanged after an update. While, already checking for entailment for all
old (but valid) partitions, we compute the new partitions in the background. That is, we
assume that both tasks are executed on different machines. Usually one wants to have
multiple reasoning systems working on several partitions, anyways. We see two major
advantages in this approach:

1. We have short response times for entailment checks, since we do not have to re-
compute the whole partitioning before we begin with the reasoning process

2. We can further distribute the workload between multiple machines during partition-
ing

Function setTerminologicalKnowledge(T ,R)
1. Compute the role hierarchy graph forR
2. Compute ∀ext-Possible and also≤1-Possible for each role occurring on T

Function addAssertion(φ)
1. If (φ = a : C) then

(a) If there exists a chunk c for a then add a : C to c
(b) else

i. Create a new Chunk c = 〈{}, {a : C}〉
ii. candidates = candidates ∪ {c}

2. else if (φ = R(a, b))
(a) Create a new Chunk c = 〈{R(a, b)}, {}〉
(b) candidates = candidates ∪ {c}

Function removeAssertion(φ)
1. If (φ = a : C) then remove C from individual a
2. else if (φ = R(a, b))

(a) Let c = chunk(R(a, b)
(b) Remove R(a, b) from c
(c) If c is empty then

i. remove c from the chunk graph
ii. candidates = candidates ∪ {cn|There exists an edge from cn to c}

Function updatePartitions()
1. Let S = ∅
2. Apply Chunk rule A, B and C exhaustively
3. For each c ∈ candidates do

(a) If c has no outgoing roles then
i. Let t = {cn|c is reachable from cn} ∪ {c}

ii. t = t∪
{R(a, b) ∈ A|R(a, b) is dom-relevant for a and a occurs in t}}}∪
{R(a, b) ∈ A|R(a, b) is ran-relevant for b and b occurs in t}}}

iii. Set partitions(c) = t
iv. S = S ∪ t

4. return S

Function checkEntailment(a : C)
1. Po = range(partitions)
2. Start computing in parallel Pu = updatePartitions()
3. For each p ∈ Po do

(a) If p |= a : C then return true
4. Wait for completion of Pu

5. For each p ∈ Pu do
(a) If p |= a : C then return true

6. return false

Fig. 6. PartitionManager interface functions

6 Example

In the following we will show an example application of the extended partitioning al-
gorithm. As example knowledge base we take the one from the original paper. Let
KB3 = 〈T3,R3,A3〉, such that

T3 = {Student v≤1 advisor.>, Chair = ∃headOf.Department,

Department v ∀subOrg.University}
R3 = {Trans(subOrg), Trans(worksFor)}
A3 = {u1 : University, d1 : Department, g1 : Group, g2 : Group, f1 : Faculty, f2 : Person,

f3 : Faculty, f4 : Faculty, s1 : Student, headOf(f3, d1), advisor(s1, f1),

advisor(s1, f2), worksFor(f3, f1), worksFor(f2, f4), subOrg(g1, d1),

subOrg(g2, d1), subOrg(d1, u1)}

Function OnMerge(Chunk c1, Chunk c2)
1. For all p ∈ P , such that p contains either c1 or c2 do

(a) candidates = candidates ∪ anchor(p)
(b) remove p from P

2. candidates = candidates ∪ c1

Function OnNewArc(Chunk c1, Chunk c2)
1. For all p ∈ P , such that p contains either c1 or c2 do

(a) candidates = candidates ∪ anchor(p)
(b) remove p from P

2. candidates = candidates \ {c1}

Fig. 7. PartitionManager helper functions

From the initial evaluation of T3 we can infer the facts ∀ext-Possible2(T3, headOf),
∀ext-Possible2(T3, subOrg) and ≤1-Possible(T3, advisor). The result of the
function redoPartitions(), i.e. the chunk graph for A3, can be seen below:

There are three anchors in the chunk graph, and thus, three partitions. Assume that we
want to add two ABox assertions to the Abox: f5 : Person and advisor(s1, f5).
Executing addAssertion(f5 : Person) yields an additional chunk, which is put into
the set of candidates. Next we execute addAssertion(advisor(s1, f5)) and we obtain
by chunk rule A that the chunk containing f : Person is merged with chunk number
3 and advisor(s1, f5) is put into chunk number 2. During these operation the partition
starting at anchor chunk 1 gets invalidated. All the other partitions are untouched. The
final result after repartitioning is shown below (untouched partitions are marked):

7 Conclusions and Future Work

In this work we have revisited and revised the partitioning algorithm proposed in [GH06].
Our results are twofold: First, we fix some issues with the original partitioning al-
gorithm, which lead to incomplete partitions. Second, we propose a revised version,
which allows for assertional updates of the ontology. The important point here is that
we only recompute those partitions, which we really need to recompute. This does not
only shorten the time needed for partitioning, but also means that we can parallelize
the reasoning process and the partitioning process. We think that both kind of results
can be seen as a contribution for scalable reasoning on the Semantic Web. Our test
implementation of the partitioning algorithm is available for download2 and can be in-
vestigated/used by other interested people.

For future work we intend to further investigate the applicability of partitioning
techniques to more real world ontologies. However, it is hard to perform these test,
without having a definition of average real world. Furthermore, we think that it should
be possible to extend the revised partitioning algorithm from SHIF to SHIQ or maybe
even further.

References

[ABB+00] M. Ashburner, C. A. Ball, J. A. Blake, D. Botstein, H. Butler, J. M. Cherry, A. P.
Davis, K. Dolinski, S. S. Dwight, J. T. Eppig, M. A. Harris, D. P. Hill, L. Issel-
Tarver, A. Kasarskis, S. Lewis, J. C. Matese, J. E. Richardson, M. Ringwald, G. M.
Rubin, and G. Sherlock. Gene ontology: tool for the unification of biology. The Gene
Ontology Consortium. Nat Genet, 25(1):25–29, May 2000.

[AH07] C. Duma A. Herzog, N. Shahmehri. An ontology of information security. Interna-
tional Journal of Information Security and Privacy, 2007.

[BCM+07] Franz Baader, Diego Calvanese, Deborah L. McGuinness, Daniele Nardi, and Pe-
ter F. Patel-Schneider. The Description Logic Handbook. Cambridge University
Press, New York, NY, USA, 2007.

[GH06] Yuanbo Guo and Jeff Heflin. A scalable approach for partitioning owl knowledge
bases. In Proc. International Workshop on Scalable Semantic Web Systems, 2006.

[GPH05] Yuanbo Guo, Zhengxiang Pan, and Jeff Heflin. Lubm: A benchmark for owl knowl-
edge base systems. J. Web Sem., 3(2-3):158–182, 2005.

[RQ93] Veronique Royer and J. J Quantz. Deriving inference rules for description logics: a
rewriting approach into sequent calculi. Technical report, Berlin, Germany, Germany,
1993.

[RRS+01] J. Rogers, A. Roberts, D. Solomon, E. van der Haring, C. Wroe, P. Zanstra, and
A. Rector. Galen ten years on: tasks and supporting tools. Medinfo, 10(Pt 1):256–60,
2001.

[W3C03] W3C. Owl web ontology language guide, 2003.

2 http://www.sts.tu-harburg.de

