Realization Problem for

Formal Concept Analysis*

N.V. Shilov

Lavren’ev av., 6, Novosibirsk 630090, Russia

shilov@iis.nsk.su

Abstract. Formal Concept Analysis (FCA) is an approach to knowledge
engineering, representation, and analysis. A ‘standard’ FCA-workflow
starts with some ‘experimental’ data, classifies “objects” and their “at-
tributes” in the data, represents relations between objects and attributes
by a number of cross-tables (matrices), couples compatible sets of objects
and attributes into concepts, and builds a number of concept lattices. In
contrast, FCA realization problem starts with ‘fragments’ of some cross-
tables and concept lattices and try to generate data that match these
fragments of cross-tables and concept lattices simultaneously. The pa-
per defines formally the FCA realization problem and proves that it is
decidable. It is done by reduction of the problem to the consistency prob-
lem for description logic ALBQO. But it is still an open question whether
FCA-realization problem have better complexity bound than ALBO has.

1 Introduction

Formal Concept Analysis (FCA) by R. Wille and B. Ganter [2] is an algebraic
framework for knowledge engineering, representation, and analysis. It takes some
‘experimental’ data, classifies “objects” and their “attributes” in the data. Then
mathematical part of FCA takes matrices that specify relation between objects
and attributes as an input and finds corresponding ‘natural clusters’ (sets) of
attributes and ‘natural clusters’ (sets) of objects. Every pair of corresponding
‘natural’ sets of objects and attributes forms a formal concept!. The set of for-
mal concepts obeys the mathematical axioms defining a lattice, and is called a
concept lattice.

Let us illustrate basic FCA notions by the following example. Assume that
some Computer Science Department has 1 Full Professor (F), 1 Associate Profes-
sor (A), 1 Lecture (L), 2 Tutors (T and Ts), and 1 Research Programmer (R).
Courses provided by the department are Programming Languages (PL), Oper-
ating Systems (OS), Data Bases (DB), and Formal Methods (FM). Research
range the same topics. Sample data about staff teaching and research profile are
presented in the tables 1.

* This research is supported in parts by (a) by joint grant RFBR 05-01-04003-a - DFG
project COMO, GZ: 436 RUS 113/829/0-1, (b) by Integration Grant n.14 Siberia
Branch, Russian Academy of Science.

! For a distinction with Description Logic, we use a combined term ‘formal concept’
in the FCA context.

Teaching| PL|OS|DB|FM|AI
& Research|PL|OS|DB|FM|AI

F X X | x

F X | x
A x| x| x

A X | x
L X | x X

L X | x
Ty X X X P "
T X X | x

Table 1. Sample stuff Teaching and Research profile

Both tables are matrices or cross-tables. These matrices establish binary re-
lations between corresponding objects and attributes. Objects are teaching and
research staff members: Objreaching = {F, A, L, T1, T2}, Objresearch = {F, A,
L, R}. Attributes are teaching and research topics: Atrreaching = AtTRescarch =
{PL, OS, DB, FM, AI}. Every triple that consists of objects, attributes and a
cross-table is called formal context. For example, ({F, A, L, T1,T2} , {PL, OS,
DB, FM, AI} , Teaching) as well as ({F, A, L, P} , {PL, OS, DB, FM, AT} ,
Research) are formal contexts (that we refer by names of their matrices).

In Teaching formal context two objects A and L share two common attributes
OS and DB. Moreover, there is no other shared attribute for these objects, but
OS and DB only. In FCA terms this connection between a set of objects {A, L}
and a set of attributes {OS, DB} is written in the form {A, L}1Teaching — Qg
DB}. On the opposite side, A and L are the only objects that share attributes
OS and DB. In FCA terms this connection between a set of attributes {OS, DB}
and a set of objects {A, L} is written in the form {OS, DB} Teaching — A '},
Observe that a set of two objects {A, L} and a set of two attributes {OS, DB}
correspond to each other and define each other uniquely in the context Teaching.
So, in Teaching context {A, L} is an example of a ‘natural cluster’ of objects
since this cluster is uniquely defined by a corresponding ‘natural cluster’ of shared
attributes {OS, DB}. In FCA terms, a pair ({A, L}, {OS, BD}) is called formal
concept in a formal context Teaching. In contrast, a pair ({A, L}, {OS, BD}) is
not a formal concept in the second formal context Research, since {A, L}TR@SQMC][1
= {08} # {08, DB} and {OS, DB} Research — () £ fA T}

Now we are ready to introduce FCA realization problem at informal level.
This time we are given some constrains for cross-tables and formal concepts
expressed in set-theoretic and FCA terms. Then we are asked to generate cross-
tables that match all given constrains (or refute a possibility to generate these
cross-tables). The following staff-hiring problem could illustrate FCA realization
problem.

Let us assume that another Computer Science Department would like to hire
new staff, namely: 1 Full Professor (F), 1 Associate Professor (A), 1 Lecture (L),
2 Tutors (T; and Tg), and 1 Research Programmer (R). Teaching and research
profile of new staff must cover Programming Languages (PL), Operating Systems
(08S), Data Bases (DB), Formal Methods (FM). But due to department policy
there are some requirements:

Teaching Research Position

PL|OS|DB|FM|AI|PL|OS|DB|FM|AI|F|A|L|T|T2|P
Blx|x]|x X | x X|x
D X | x X X | x X|x
G| x X X | x x| x|x
H X X | x X | x X X | x|x
K| x X | x X | x|x
L|x X X|x|x X X | x|[x
M X X X
Nix|[x]|x X | x X

Table 2. Summary of sample applicants

1. Full Professor and Associate Professor together must cover all teaching sub-
jects.

2. Lecturer must be able to teach some subject instead of Full Professor and

some subject instead of Associate Professor.

. Tutors together must cover all teaching subjects.

. Every tutor must be able to teach a subject after Full Professor.

5. Full professor, Associate professor, and Lecturer must conduct research in
some research areas within subject(s) they teach.

6. Research Programmer must support research of Full Professor.

=~ o

Assume also that eight people have applied for these vacant positions: Beanka
(B), Donald (D), Greta (G), Huan (H), Kevin (K), Leonora (L), Monica (M),
and Norman (N). Summary of their applications is presented in the table 2. (It
uses the same notation as table 1.)

A particular example of the staff-hiring problem is: whether it is possible to
select five people among eight applicants to fill vacant positions and to meet six
above requirements simultaneously?

Fortunately, this problem can be encoded easily as the following instance of
the FCA-realization problem.

1. Split table 2 onto three formal contexts Teaching, Research, and Position.

Present cross-tables of these formal contexts row by row as follows:

_ BTTeaching — {PL7 OS, DB}, BTResearch — {PL, OS}, BTPosition — {F, A},
_ DTTeaching — , DTResearch — , DTPosition — .

Professor, Associate Professor, Lecture, Tutor; and Tutory, and Research
Programmer:
- {U7 V7 X7 Y17 Y2) Z}' C {B7 D7 G7 Ha Ka La M7 N}»
—Fe UTPosit.io.n’ A c VTPositio'nj Le XTPosition’
Tl c YIPOSIUOH7 T2 c Y;Po&tlon’ Pe ZTPOSition.
3. Formulate position requirements in FCA terms using variables U, V, X;, Xg,
Y, and Z instead of position names F, A, L, Ty, To, and P:

_ {U}TTeaching U {V}TTeaching — {PL7 OS7 DB, FM7 AI},
_ {X}TTeaching N {U}TTeaching 7é (Z), {X}TTeaching e {V}TTeaching 7& @7
4. Find ‘values’ for variables U, V, X, Yy, Y2, and Z that meet all above
constrains simultaneously, or refute existence of these values.

Fortunately, FCA realization problem is decidable due to a reduction to satis-
fiability problem for a description logic ALBO [4]. It implies that a particular
instance of stuff-hiring problem as well as any other instance of this problem can
be solved automatically by some tableau algorithm.

A reduction can be done by integrating FCA constructs into Description
Logic (DL) [5]. For every particular description logic £ let £L/FCA be an exten-
sion of £ by FCA operations ‘1’ and ‘|’. Paper [5] has proved that £/FCA can
be expressed in £(—, —) — another variant of £ that is closed with respect to role
complement and inverse.

The paper is organized as follows. The next section 2 introduces basic notions
and some facts related to Formal Concept Analysis. Integration of FCA into DL
is sketched in the section 3. Formalization of FCA-realization problem and its
reduction to ALBO-satisfiability are presented in the last section 4.

2 Foundations of FCA

Basic Formal Concept Analysis (FCA) definitions below follow monograph [2],
but we use a little bit different notation.

Definition 1. A formal context is a triple (O, A, B) where O and A are sets
of ‘objects’ and ‘attributes’ respectively, and B C O x A is a binary relation
connecting objects and attributes.

For example, every terminological interpretation (D, I') defines a family of formal
contexts (D, D, I(R)) indexed by role symbols and/or role terms R.

Usually formal contexts are represented as cross-tables. A cross-table for a
formal context (O, A, B) is a matrix, where rows correspond to object, columns
— to attributes; for any object s and attribute ¢, if (s,¢) € B then a cross ‘x’ is
located in a position (s,t) of the matrix. See table 1 for an example.

Two major algebraic operations for formal contexts are upper and lower
derivations. They are used to define a notion of a formal concept.

Definition 2. Let (O, A, B) be a formal context.

— For every set of objects X C O its upper derivation X' is a set of attributes
{te A: for everys € O, if s € X then (s,t) € B}, i.e. the collection of all
attributes that all objects in X have simultaneously.

— For every set of attributes Y C A its lower derivation Y is a set of objects
{s€O: foreveryt € A, ift €Y then (s,t) € B}, i.e. the collection of all
objects that have simultaneously all attributes in'Y .

— A formal concept is any pair (Ex,In) such that Ex C O, In C A, and
Ex! = In, In' = Ex; components Ex and In of the formal concept (Ex, In)
are called its extent and intent respectively.

The above definition is given for a fixed single context when one can use a
superscript notation ‘7’ and ‘|’ to denote upper and lower derivative operations
for an implicit binary relation. But in the case when we have a family of formal
contexts K; = (0;,A;, B;), j € J it makes sense to attach an explicit reference
K;, or Bj, or index j to the superscripts, for example: ‘T K;’, ‘| B;’ or ‘T j'.

Definition 3. For every formal context K = (O, A, B)

— let FC(K) be the set of all formal concepts over K, T i be a formal concept
(0,01, and L be a formal concept (Al, A);
— let <k be the following binary relation FC(K):
(BEx',In') <k (Ex",In") iff Ex’ C Ex" and/or® In" C In';
— let supy be the following operation on subsets of FC(K):
supp{(Exj, Ing) € FO(K) :j € J} = ((UjesBaj)', NjesIng);
— let inf i be the following operation on subsets of FC(K):
ian{(Exj,Inj) S FC(K) 1 j € J} = (nje(]EZj R (UjEJI’Ilj)lT).

The following fact is a part of the Basic Theorem on Concept Lattices [2].

Fact 1 For any formal context K an algebraic system (FC(K), =<k, Tk, Lk,
supy,infg) is a complete lattice.

The definition below makes sense due to the above theorem.

Definition 4. For every formal context K let concept lattice CL(K) be the fol-
lowing complete lattice (FC(K), <k, Tk, Lk,supy,infg).

3 Integrating FCA operations into DL

There are many description logics, but we define in brief only some of them.
Please refer a comprehensive handbook [1] for full details.

Attribute Language with Complements (ALC) [3] is a particular example of
description logic. In simple words, ALC adopts role symbols as the only role
terms, concept symbols — as elementary concept terms, and permits ‘Boolean’
constructs ‘—’, ‘L1, ‘T1, universal and existential restrictions ‘v’ and ‘3’ as the
only concept constructs. A formal syntax definition follows.

Definition 5. ALC is a description logic which only role terms are role symbols
RS and concept terms are defined by the following context-free grammar:

Cace =
CS|T|L|(=Cacc)|(Cace UCare)|(Cace M Cace)|(VRS. Care)|(3RS. Cacc)

2 These two conditions are equivalent each other.

where metavariables C'S and RS represent any concept and role symbols, respec-
tively. Semantics of ALC is defined in the standard way in terminological inter-
pretations [1].

Many description logics can be defined as extensions of ALC by concept
and role constructs. Let us represent a collection of concept and role constructs
by a sequence of concept constructs followed by a sequence of role constructs
separated by a delimiter &3. So, a general pattern for a collection is C& R, where
C stays for a sequence of concept constructs, and R stays for a sequence of role
constructs. For any collection of this kind let ALC(C&R) be a ‘closure’ of ALC
that admits all concept and role constructs in C&R.

Definition 6. A variant of DL is a description logic L with syntax that

— contains all concept and role symbols C'S and RS,
— s closed under concept constructs “—’, U’ T, ¥’ and 9°.

Let us remark that ‘variant’ is not a conventional term. We introduce it for tech-
nical convenience, since conventional DL glossary does not provide an equivalent
term. Let us also remark that from the viewpoint of the above definition, ALC
is the smallest variant of DL.

Definition 7. Let L be a variant of DL and C&R be a collection of concept
and/or role constructs. Then let L(C&R) be the smallest variant of DL that
includes L and is closed under all constructs in C&R.

For example, ALC(—, —) is an extension of ALC where any role symbol can be
negated and/or inverted. Another important example is Attribute Language with
Boolean algebras on concepts and roles with Object symbols ALBO [4]. This
description logic can be defined as ALC(OS & 7, -, —), where ‘OS’ represents a
set of singleton concept term constructs ‘{a}’ for every object symbol a € OS
(that are called nominals*), and ‘?” represents two role term constructs — domain
“” and range ‘|’ restrictions.

Fact 2 Satisfiability and consistency problems are decidable for ALBO and there
exist a tableau procedures that solve them. But (unfortunately) both problems are
hard to solve: they are complete in the class of mnon-deterministic exponential
time computations NExp-Time.

Please refer [4] for details.

Definition 8. Let L be a variant of DL. Then let L/FCA be a closure of L with
respect to two mew formula constructors for the upper and lower derivatives.
Syntaz of these two constructs follows: for every role term R and every concept
term X let (X'7) and (X'%) be concept terms too. They are read as ‘upper
derivative of X with respect to R’ and, respectively, as ‘lower derivative of X
with respect to R’. For every terminological interpretation (D, I) let

3 Recall that DL does not use conjunction symbol ‘&’, but intersection ‘/1’. We drop
out the delimiter ‘&’ when concept/role constructs are implicit.
4 Due to modal logic tradition. They are called constants n program logic tradition.

I(XTBY = {t: for every s € D, if s € I(X) then (s,t) € I(R)}
(— i.e. the upper derivation of I1(X) in a formal context (D, D,I(R)));

— I(X'B) ={s: for everyt € D, ift € I(X) then (s,t) € I(R)}
(- i.e. the lower derivation of I(X) in a formal context (D, D, I(R))).

The definition states, that for every DL variant £, £L/FCA is simply £(7,|). In
particular, ALC/FCA is an extension of ALC where both derivative constructors
are allowed.

The following fact has been proved in Proposition 1 in [5].

Fact 3

1. Let L be a variant of DL. For every role and concept terms within L the
following concepts of L/FCA and L(—,—) are equivalent:
(a) ~(XT®) and I-R~. X,
(b) X8 and V-R~. X,
(c) ~(X') and I-R. X,
(d) X'E and® V-R. -X.

2. L/FCA can be expressed in L(—,—) with linear complexity, i.e. every con-
cept X in L/FCA is equivalent to some concept Y in L(—,—) that can be
constructed in linear time.

In particular, ALC/FCA is expressible in ALC(—, —), and ALBO/FCA is ex-
pressively equivalent to ALBQ itself. The decidability of ALBO (see Fact 2)
implies the next corollary.

Corollary 1. For any fragment L of ALBO the satisfiability and consistency
problems for L/FCA are decidable.

4 FCA Realization Problem

Let us define a new algorithmic problem for Formal Concept Analysis which
we call FCA realization problem. It can be defined informally as follows. Let
us assume that X' is a finite ‘collection’ of set-theoretic (in)equalities written in
terms of uninterpreted symbols for individual objects and attributes, for sets of
objects and attributes, for formal contexts with aid of set-theoretic operations,
upper and lower derivative. The question is: can any set of formal contexts realize
this ‘collection’ X7
Formal definitions follows. In these definitions we assume that

O is a fixed set of object constants,

— A is a fixed set of attribute constants,

— I' is a fixed alphabet of formal context names,

@ is a fixed alphabet of names for sets of objects,

— ¥ is a fixed alphabet of names for sets of attributes,

5 Let us remark that ‘operator’ Y—R. =X has been already know in modal, program,
and description logic community as ‘window operator’ [4].

— and {2 is a fixed alphabet of names for formal contexts.

Definition 9. FCA-expression can be of one of two types: either of OS-type
(object-set type) or of AS-type (attribute-set type). FCA-expressions and their
types are defined by mutual recursion as follows.

Object-set type expressions:

Every finite subset of © is an expression of OS-type.

Every name in @ is an expression of OS-type.

For every name w € (2, object set O, is an expression of OS-type.

For every expression € of AS-type and every context name w € (2, lower
derivative €' is an expression of OS-type.

Every set-theoretic expression constructed from any expressions of OS-
type by means of union U’, intersection ‘N’ and set-difference *\’, is also
an expression of OS-type.

Attribute-set type expressions:

Every finite subset of attributes A is an expression of AS-type.

Every name in ¥ is an expression of AS-type.

For every name w € §2, attribute set A, is an expression of AS-type.
For every expression € of OS-type and every context name w € §2, upper
derivative 1% is an expression of AS-type.

Every set-theoretic expression constructed from any expressions of AS-
type by means of union U’, intersection ‘N’ and set-difference *\’, is also
an expression of AS-type.

Definition 10. A FCA-sentence has on of the following forms:

— 0 € ¢, where o € O is any object, € is any expression of OS-type;

a € g, where a € A is any attribute, € is any expression of AS-type;

— & C £”, where & and €"” are any FCA-expressions of one type;
— (e/,e"YFC(w) where ' is any expression of OS-type, €’ is any expression of
AS-type, and w € (2 is any context name.

A FCA-system (of sentences) is any Boolean combination of FCA-sentences.

Definition 11. A wvaluation is a mapping v that assigns

— a set v(1) to every name v € P,
— a set v(k) to every name k € ¥
— a formal contert v(w) = (Oy(w), Av(w) Buw)) to every name w € £2,

in such a way that the following conditions hold:

— for set of objects © C UueOy(w);

— for set of attributes A C UyenAyw);

— for every name 1 € P, v(1) C Uue Oy (w);
— for every name k € ¥, v(k) C UvenAyw)-

Let us extend valuations on FCA-expressions in the following natural way.

Definition 12.

Object-set type expressions:
— v(S) =8 for every finite subset S of O.
— () = (v(e)'@) for every AS-type expression e and name w € 12.
Attribute-set type expressions:
— v(S) =S for every finite subset S of A.
— w(el?) = (v(e)T@) for every OS-type expression ¢ and name w € £2.
Both FCA types:
v(e'ne”) = v(E) N vE),
v(E'ue”) = wv(e) U v(e”),

v(Ee'\e") = v(e) \ v(E").

The following proposition is easy to prove by induction on structure of FCA-
Expressions.

Proposition 1. For every valuation v, for every OS-type and AS-type FCA-
expressions ¢ and 1 respectively v(¢) C UueOyw), and v(¢) C UuenAy(w)-

This proposition leads to opportunity to extend valuations onto FCA-sentences.

Definition 13. FEvery evaluation v assigns Boolean value true’ or ‘false’ to
FCA-sentences as follows:

v(o € €) =true if o € v(e); otherwise v(o € €) = false;

v(a € €) =true if a € v(e); otherwise v(a € €) = false;

v(e’ C &") =true if v(e’) C wv(e”); otherwise v(e’ C &) = false;
v((e,e")FC(w)) = true if (v(e') , v(e”) is a formal concept in a formal
context v(w); otherwise v((e',e")FC(w)) = false.

oo

We are ready to define satisfiability for FCA-systems and FCA realization prob-
lem.

Definition 14. For every evaluation v and every FCA-system (of sentences) X
let v(X) be a Boolean value true’ or ‘false’ computed according to the standard
rules from values of FCA-sentences. An FCA-system X is said to be satisfiable
if there exists an evaluation v such that v(X) = true. FCA realization problem
is an algorithmic problem to check for input FCA-system whether it is satisfiable
or not.

Proposition 2. FCA realization problem is decidable.

Proof. Let X be an input FCA-system. Since X' is a Boolean combination of
FCA-sentences, it can be transformed to equivalent system but in a disjunctive
normal form \/;. (/e 7)) where all m(; j are FCA-sentences or their nega-
tions. Hence X' is satisfiable iff any conjunction (A;c 7 ;) is satisfiable. So
we may assume that X' is a conjunction of FCA-sentences or their negations.

But FCA realization for a system of this kind is easy to reduce to consistency
of ALBO knowledge base, that is a known decidable problem (Fact 2). A variant
of reduction is presented below.

Let alphabet of object symbols consists of all elements in @U A, Let alphabet
of concept symbols consists of all O,, and A, for all w € {2. Let alphabet of role
symbols consists of all B, for all w € 2. Observe that in this syntax every FCA-
expression can be considered as a concept term®. The every FCA-sentence or its
negation can be converted to equivalent terminological or assertional sentences
as follows:

—o0€e — 0: (UpenOy,) M g
—(o€¢e) — 0:(UpenO,) M (—e);

—a€e — a:(Upendy) M &
—(a€e) — a:(Upendy) N (-e);

—e Ce' - C e C ') - x:(e N (")), where ‘z’ is fresh
object symbol;

— (¢, YFC(w) — (& CO0,, "C A, (€)1Bs=¢"), ()P =¢').

In this way we can convert any conjunction of FCA-sentences and their nega-
tions to some ALBO/FCA knowledge base which equivalent with respect to
satisfiability. But ALBO/FCA is ALBO(T,|) which in turn is expressible in
ALBO(—~,—) = ALBO. But ALBO-consistency problem is decidable (see Fact
2). It finishes the proof. W

Unfortunately, our decision procedure (that is sketched in the proof of propo-
sition 2) is extremely inefficient and impractical: we reduce the problem to ex-
ponential number of instances of ALBO-satisfiability problem, which is known
to be NExp-Time-complete [4].

References

1. Baader F., D. Calvanese, D. Nardi D.McGuinness, and P. Patel-Schneider, editors.
The Description Logic Handbook: Theory,Implementation and Applications. Cam-
bridge University Press, 2003.

2. Ganter B., Wille R. Formal Concept Analysis. Mathematical Foundations. Springer
Verlag, 1996.

3. Schmidt-Schaufl M., and Smolka G. Attributive concept descriptions with comple-
ments. J. Artificial Intelligence, Vol. 48, 1991, pp. 1-26.

4. Schmidt R.A., Tishkovsky D. Using Tableau to Decide Ezxpressive Description Logics
with Role Negation. The Semantic Web. Proceedings of 6th International Semantic
Web Conference and 2nd Asian Semantic Web Conference. Springer Lecture Notes
in Computer Science, v.4825, 2007, p.438-451.

5. Shilov N.V. Garanina N.O., Anureev 1.S. Combining Two Formalism for Reasoning
about Concepts. Proceedings of the 2007 International Workshop on Description
Logics (DL2007), Brixen Italy, 2007. CEUR Workshop Proceedings v.250. p.459-
466.

6 Tt is sufficient to replace ‘v, ‘U’ and ‘\’ by ‘I, ‘L’ and ‘M1—".

