
Visualization of Description Logic Models?

Fernando Náufel do Amaral and Carlos Bazílio Martins

Depto. de Ciência e Tecnologia, Pólo Universitário de Rio das Ostras,
Universidade Federal Fluminense, Rio das Ostras, RJ, Brazil

{fnaufel,bazilio}@ic.uff.br

Abstract. Many visualization frameworks for ontologies in general and
for concept expressions in particular are too faithful to the syntax of
the languages in which those objects are represented (e.g., RDF, OWL,
DL). Model outlines depart from this tradition in that they consist of
diagrams characterizing the class of models of a given concept expression.
We hope this semantically-oriented visualization strategy will allow users
to obtain deeper insights about the meaning of such expressions, thereby
preventing errors of design or of interpretation.

1 Introduction

The need to provide graphical representations of ontologies has motivated the de-
velopment of a variety of visualization frameworks, upon which several browsers
have been based. By default, many browsers present at once almost all of the
information contained in the ontology, relying on the user to filter out data that
is not relevant to his/her objectives. However, users are not always able to set
up filters that are suitable for their purposes, and may end up with cluttered
screens, where they spend valuable time searching for wanted information.

Users may benefit from a more task-oriented visualization strategy, where
a browser or editor would present only the information necessary for them to
achieve their objectives. Here, we present such a visualization framework, dedi-
cated to the task of interpreting (and possibly editing) DL concept descriptions,
such as may be used as necessary/sufficient conditions for classes in an ontology.

In many browsers the level of abstraction is not much higher than the (tex-
tual) languages commonly used to represent ontologies, such as RDF and OWL.
We believe that a visualization framework should emphasize the meaning of ex-
pressions and abstract from their syntax, enabling users to perceive semantic sim-
ilarities between expressions that are syntactically very different, and vice-versa.
Our proposed framework — model outlines — is based on diagrams characteriz-
ing the class of models of a given concept expression, which present simple visual
objects that are equivalent to (possibly more complicated) syntactical objects in
the ontology.

Model outlines may be useful in knowledge engineering, in the task of model-
ing a domain, where the meaning of concept expressions must be well-understood
? Work supported by research grant APQ1 E-26/170.503/2007 from FAPERJ.

2 Fernando Náufel do Amaral, Carlos Bazílio Martins

DL Manchester OWL Meaning
C, D → A A I(A)

| > THING ∆
| ⊥ NOTHING ∅
| ¬C NOT C ∆− I(C)
| C uD C AND D I(C) ∩ I(D)
| C tD C OR D I(C) ∪ I(D)
| ∀R.C R ONLY C {a ∈ ∆ | ∀b.[(a, b) ∈ I(R)⇒ b ∈ I(C)]}
| ∃R.C R SOME C {a ∈ ∆ | ∃b.[(a, b) ∈ I(R) ∧ b ∈ I(C)]}
| ≤ n.R R MAX n {a ∈ ∆ | #{b | (a, b) ∈ I(R)} ≤ n}
| ≥ n.R R MIN n {a ∈ ∆ | #{b | (a, b) ∈ I(R)} ≥ n}
| = n.R R EXACTLY n {a ∈ ∆ | #{b | (a, b) ∈ I(R)} = n}

Fig. 1. ALCN concept expressions and their meaning

both by authors and users of the ontology. Another area where understanding the
meaning of concept expressions is important is proof explanation [1, 2], where the
user may have to deal with many such expressions comprising the intermediate
steps in a long proof.

For simplicity (and because this is work in progress) we concentrate on the
description logic ALCN . After the basic definitions, we present the visual items
that appear in a model outline, along with an algorithm to produce the concept
expression corresponding to a given model outline. This establishes a precise
semantics for our proposed visualization framework. We then give an algorithm
to construct the model outline corresponding to a given concept expression,
illustrate with some examples and close with a discussion about further work.

2 Model Outlines

2.1 Definitions

Fig. 1 defines the language of ALCN concept expressions, both in the DL syntax
and in the Manchester OWL syntax [3]. In the grammar, A stands for a class
name (i.e., an atomic concept term), R stands for a property name (i.e., an
atomic role term), and n represents a natural number. The (set-theoretical)
meaning of these expressions is given by a nonempty set ∆ (the universe or
domain) along with an interpretation I mapping each concept expression C to
a set I(C) ⊆ ∆, and each role term R to a binary relation I(R) ⊆ ∆2. An
interpretation I must map each expression in the first column to the set given
in the last column. #S denotes the cardinality of a set S.

A literal is an expression of the form A or of the form ¬A, where A is an
atomic concept term.

We use “R NOT n” as an abbreviation for “NOT (R EXACTLY n)”;
we also use “FROM m THRU n” as an abbreviation for the conjunction
“(R MIN m) AND (R MAX n)” when m < n.

Visualization of Description Logic Models 3

2.2 Visual Items and Their Semantics

We follow the symbology established by the Protégé1 user interfaces in repre-
senting individuals as dark-colored diamonds. When cardinality restrictions are
not present, the number of individuals satisfying certain conditions is not impor-
tant; therefore, so as not to mislead users into thinking that only one individual
is allowed in a certain situation, we show a little cluster of diamonds.

The individuals in our model outlines are not named, since their identity is
not important and since we do not want to clutter the display with unnecessary
information. Instead, we label each cluster of individuals with a concept expres-
sion C consisting of a conjunction of literals or of a disjunction of literals. (If
C is >, the label is omitted. If C is ⊥, the symbol “∅” is used.) This situation
is depicted in Fig. 2(a), with the obvious meaning that the individuals in the
cluster satisfy the concept expression C.

In order to display more complex concept expressions, we use labeled arrows
and boxes to show how individuals are related to their role fillers, and we use case
widgets to show how individuals may satisfy the different cases of a disjunction.

Fig. 2(b) shows a cluster x satisfying the expression ∀R.C. An almost univer-
sally accepted graphical convention is that dashed or grayed-out lines invoke the
idea of absence; we use this convention to stress the fact that x will still satisfy
∀R.C even if x has no fillers for R. We surround such possible fillers with a box
to show that they all must satisfy C.

Fig. 2(c) shows a cluster x satisfying the expression ∃R.C1 u . . . u ∃R.Cn.
The fact that x may have other fillers for R (besides those satisfying C1, . . . , Cn)
is represented by the unlabeled, dashed/grayed-out cluster at the bottom. For
uniformity of notation, we have decided to surround the set of fillers with a box,
regardless of whether such fillers come from existential or universal constraints.
This requires fewer arrows to be drawn, reducing clutter in the display, as the
alternative would be to have separate arrows from x to each filler. The presence
of the unlabeled cluster and the fact that the box is unlabeled should make it
clear that there are no universal constraints placed on the fillers.

Fig. 2(d) shows a cluster x satisfying ∃R.C1 u . . . u ∃R.Cn u ∀R.D, with the
universal constraint on the fillers indicated by the label under the box.

Fig. 2(e) shows a cluster x satisfying ∃R.C1u . . .u∃R.Cnu∀R.(C1t . . .tCn).
It is the absence of unlabeled clusters that shows that all the fillers must satisfy
at least one of C1, . . . , Cn.

Fig. 2(f) shows a cluster x satisfying ∃R.C1 u . . . u ∃R.Cn u ∀R.(C1 t . . . t
Cn)u∀R.D. All fillers must satisfy (C1 t . . .tCn)uD, where D itself may be a
complex expression. Instead of showing such a possibly complicated expression
to the user, we distribute its components among the labels in an intuitive way.

Fig. 2(g) shows a cluster x satisfying the expression ∃R.C1 u . . . u ∃R.Cn u
∀R.(C1t. . .tCn)u∃R.D1u. . .u∃R.Dn. The requirement that x have fillers for R
satisfying each of D1, . . . Dm is indicated by the oval with the word “including”,
meaning that these added fillers are already included in C1 t . . .tCn. Note that

1 http://protege.stanford.edu

4 Fernando Náufel do Amaral, Carlos Bazílio Martins

(a) (b) (c) (d) (e)

(f) (g) (h) (i)

Fig. 2. Visual items that may occur in model outlines

it is not required that all fillers satisfy any of D1, . . . Dm. In this respect, the
oval serves to “isolate” D1, . . . , Dm, preventing them from participating in the
universal constraints on the fillers.

Fig. 2(h) shows a cluster x satisfying the expression ∃R.C1 u . . . u ∃R.Cn u
∀R.(C1 t . . . t Cn) u ∃R.D1 u . . . u ∃R.Dn u ∀R.E.

Fig. 2(i) shows the way cardinality restrictions on a role R are represented: a
condition cond is added as a label above the target box of the arrow for R. Such
a condition is of the form “MIN n”, “MAX n”, “EXACTLY n”, “NOT n”,
“FROM m THRU n”, or a list of these, representing a disjunction of car-
dinality restrictions on R. We think that the use of Manchester OWL syntax
makes cardinality restrictions more legible for the nonspecialist user; in particu-
lar, “FROM m THRU n” is more readily understood than, say, “m ≤ x ≤ n”,
in which the number of individuals in the box would have to be represented,
somewhat cryptically, by a variable x. The contents of the box and the nature of
the arrow (solid or dashed/grayed out) depend on the minimum number of fillers

Visualization of Description Logic Models 5

(a) (b)

Fig. 3. Universal and existential restrictions

Fig. 4. Complex disjunctions

specified by the cardinality restrictions, as well as on additional quantification
constraints for R.

Constraints on the fillers for R may include quantifiers besides (or instead
of) conjunctions or disjunctions of literals. Examples would be ∀R.(C u ∃S.D)
and ∃R.(C u ∃S.D), depicted in Fig. 3. A restriction involving a quantifier is
represented by an arrow: if it is a universal restriction (acting upon all fillers
in the box), then the arrow leaves the frame of the box, as in (a); if it is an
existential restriction (acting upon only one cluster of individuals in the box),
then the arrow leaves that cluster, as in (b). The nature of the arrow (solid or
dashed), the labels on it and the construction of its target box follow the exact
same rules explained above with respect to Figs. 2(a) through (i).

Finally, we show how to represent disjunctions involving more than literals.
As explained in Sect. 2.3 below, the algorithm to construct a model outline takes
as input a concept expression in disjunctive normal form. The idea is to present
one disjunct (i.e., one case) at a time for each cluster, along with a “case widget”
for viewing the other cases upon demand. Each case is displayed following the
rules explained in the preceding paragraphs. When the user switches to another
case for a cluster, the whole subtree rooted at that cluster may change.

As an example, the expression (C u ∀R.(D tE))t (F u ∃R.(GtH)) (where
C,D,E, F, G and H are conjunctions of literals) gives rise to 4 cases, all of which
are represented in Fig. 4. Note that the case widget is placed above clusters
introduced by existential restrictions (the clusters labeled by G and by H in

6 Fernando Náufel do Amaral, Carlos Bazílio Martins

expression(x)

1. exp← ⊥
2. For each case rooted at x (if there is no case widget above x, then x is the root of

exactly one case):
(a) disjunct← L(x)
(b) For each arrow of which x is the source:

i. Let R be the role name labeling the arrow, let b be the target box of
the arrow, let K be the disjunction of cardinality restrictions above b, let
y1, . . . , ym (m > 0) be the clusters directly enclosed by b, and let z1, . . . , zn

(n ≥ 0) be the clusters enclosed by the “including” oval in b
ii. disjunct← disjunct u ∀R.(expression(y1) t . . . t expression(ym))
iii. Let yi1 , . . . , yik be the items directly enclosed by b that are not dashed

or grayed out. Then disjunct ← disjunct u ∃R.expression(yi1) u . . . u
∃R.expression(yik)

iv. disjunct← disjunct u ∃R.expression(z1) u . . . u ∃R.expression(zn)
v. disjunct← disjunct uK
vi. disjunct← disjunct u ∀R.expression(b)

(c) exp← exp t disjunct

Fig. 5. Algorithm to construct ALCN expression corresponding to visual item x

the figure), and above boxes corresponding to universal restrictions (the boxes
containing the clusters labeled by D and by E in the figure).

Formally, a model outline can be defined as a tree with labeled nodes (cor-
responding to clusters) and labeled edges (corresponding to arrows). The labels
contain information as to how the corresponding clusters and edges should be
rendered. A box is just a visual artifact to gather together sibling nodes. In the
diagram, an arrow leaving a box is just a visual artifact to represent a set of
edges leaving all the children of some node.

To make the semantics of model outlines precise, Fig. 5 gives a recursive
algorithm to produce a concept expression corresponding to an item x (a cluster
or a box). In the algorithm, the expression L(i) for an item i (a cluster or a
box) denotes the label under i (if i is labeled by a concept expression), > (if i is
unlabeled), or ⊥ (if i is labeled by “∅”).

2.3 From Concept Expressions to Model Outlines

We now show how to build a model outline for any given ALCN concept expres-
sion C. We start by converting C to disjunctive normal form (DNF), applying
simplification rules in the process.2 This will yield a disjunction of the form
D1 t . . . t Dn, where each disjunct Di is a conjunction. To each Di we then
apply the simplification rule

∀R.C1 u . . . u ∀R.Cm B ∀R.(C1 u . . . u Cm)
2 The set of simplifications applied will be discussed in Sect. 4.

Visualization of Description Logic Models 7

outline(C′, v)

1. If C′ = ⊥, then label v with the symbol ∅ and return.
2. If C′ = >, then remove all labels from v and return.
3. If C′ = L1 t . . . t Ls, with each Li a literal, then label v by C′ and return.
4. If C′ = L1 u . . . u Ls, with each Li a literal, then label v by C′ and return.
5. If none of the above applies, then if the number n of disjuncts in C′ is greater

than 1, introduce a case widget above v reading “1 of n”.
6. For each disjunct D′

i in C′ (recall that D′
i has the form shown in (1)): add to v a

label and arrows as shown in Fig. 7(a). The resulting diagram is not yet a mean-
ingful model outline: some of the labels may be more complex than conjunctions
or disjunctions of literals. So, for each j with 1 ≤ j ≤ r, modify the Rj arrow and
its target box as follows:
(a) If Kj is not present in the conjunction, or if Kj = >, then omit the label Kj

above the box.
(b) If ∀Rj .Fj is not present in the conjunction, or if Fj = >, then omit the label

Fj below the box.
(c) If qj = 0 (i.e., there are no conjuncts of the form ∃Rj .Gjk) and if the disjunc-

tion of cardinality restrictions Kj does not imply > 0.Rj , then make the Rj

arrow dashed/grayed out and move the Fj label from below the box to below
the single cluster inside the box, as shown in Fig. 7(b).

(d) If qj > 0 and if Fj is of the form (Gt1uH)t. . .t(GtuuH) for some conjunction
H, with {t1, . . . , tu} ⊆ {j1, . . . , jqj} (see Fig. 7(c)), then

i. Delete the unlabeled cluster in the box.
ii. If {t1, . . . , tu} {j1, . . . , jqj}, then create an “including” oval in the box

and move all clusters with indexes in {j1, . . . , jqj} \ {t1, . . . , tu} into the
oval.

iii. Change the label under the box to H.
Fig. 7(d) shows the result, where {w1, . . . , wqj−u} = {j1, . . . , jqj}\{t1, . . . , tu}.

(e) For each visual element x (cluster or box) in the resulting diagram, call
outline(`, x), where ` is the label under x.

Fig. 6. Algorithm to construct model outline rooted at visual item v for ALCN ex-
pression C′. More details are given in the text.

As a result, we obtain C ′, which is a disjunction D′
1 t . . . tD′

n, where each D′
i

is of the form

L1 u . . . u Lp u ∀R1.F1 u ∃R1.G11 u . . . u ∃R1.G1q1 uK1 u . . .

u ∀Rr.Fr u ∃Rr.Gr1 u . . . u ∃Rr.Grqr uKr

(1)

where each Li is a literal, all the Fi and all the Gij are in DNF and each Ki

is a disjunction of cardinality restrictions3 over role Ri. Any (or all) of these
elements may be absent.
3 Obtained by simplification using a suitable set of rewrite rules for intervals of natural

numbers. Strictly speaking, this is not DNF, but we believe cardinality restrictions
are more readable as a disjunction than as a conjunction of intervals.

8 Fernando Náufel do Amaral, Carlos Bazílio Martins

(b)

(a) (c) (d)

Fig. 7. Situations referenced by algorithm outline

Fig. 6 shows the recursive algorithm outline(C ′, v), where v is the visual item
corresponding to C ′. Initially, we create a cluster of individuals x (the root of the
model outline) and pass it to the algorithm along with C ′. Recursive calls will
pass as v either a cluster of individuals or a box, according to the case, along
with the concept expression that v is supposed to satisfy. Item (d) of step 6
corresponds to the creation of an “including” oval, as illustrated in Fig. 2(g).

Algorithms expression and outline are related by the following commutation
result:

Theorem 1. Given an ALCN concept expression C in DNF and a cluster of
individuals x, we have that expression(outline(C, x)) ≡ C.

The proof is by induction on the structure of C.
In order to make model outlines more concise, we can refine algorithm out-

line to apply some graphical simplifications, while still preserving the truth of
Theorem 1. For example, if there are two or more unlabeled clusters in the same
box, we can delete all but one of them. We can also delete unlabeled clusters
inside “including” ovals, as well as empty “including” ovals.

Visualization of Description Logic Models 9

Fig. 8. Model outline for (2)

Pizza u
∃hasTopping.Mozzarella
u ∃hasTopping.Tomato
u ∀hasTopping.
(Mozzarella t Tomato)

(a)

Pizza u
∃hasTopping.Mozzarella
u ∃hasTopping.Tomato

(b)

Pizza u
∀hasTopping.
(Mozzarella t Tomato)

(c)

Fig. 9. Correct and incorrect Margheritta pizza specifications

3 Examples

Example 1. To illustrate the use of model outlines in helping users understand
the meaning of a complex expression, compare the example in DL syntax (which
appears in [1] in the context of proof explanation)

∃hasChild.> u ∀hasChild.¬((∃hasChild.¬Doctor) t (∃hasChild.Lawyer)) (2)

with the corresponding model outline in Fig. 8.

Example 2. To show how model outlines can help prevent common modeling
errors, compare the 3 attempts to specify a Margheritta pizza shown in Fig. 9
(see the discussion in [4]). The correct specification is (a). In (b), the presence
of the unlabeled cluster will signal that a closure axiom is missing. In (c), the
dashed/grayed out objects will alert the user to the fact that this specification
can be vacuously satisfied by a pizza with no toppings, and the label “Mozzarella
OR Tomato” will make it clear that a pizza having only one of those toppings
still satisfies this specification.

4 Conclusion

We have presented model outlines, a graphical formalism for characterizing the
class of models of a given ALCN concept expression. We have provided the pre-

10 Fernando Náufel do Amaral, Carlos Bazílio Martins

cise semantics of model outlines by means of an algorithm (expression) yielding
an ALCN concept expression corresponding to a given outline. We have also
provided an algorithm (outline) for building a model outline for a given ALCN
concept expression. We have shown that given an ALCN concept expression C in
DNF and a cluster of individuals x, we have that expression(outline(C, x)) ≡ C.

Our original motivation was the visualization of concept expressions. How-
ever, Example 2 in Sect. 3 shows that model outlines can also be useful for
constructing such expressions. We envision a graphical editor where the user can
manipulate elements such as clusters, arrows, boxes and class names to build
a model outline embodying the condition he/she intends to specify. Then an
algorithm like expression can automatically generate such conditions in DL or
OWL syntax, for example. This functionality is similar to the one provided by
visual query languages (e.g., [5]).

Disjunction is a source of high complexity, as a concept expression in DNF
containing n disjunctions may give rise to 2n−1 cases. When converting a concept
expression to DNF, we can apply a minimization algorithm to try to reduce the
number of disjuncts, but the exponential length of DNF is unavoidable in the
general case. DNF minimization is an NP-hard problem, which may justify the
use of heuristics instead of exact algorithms if the input expression is long.

As for visualization of disjunction, besides showing the total number of cases
in a case widget over the root cluster of each case, we plan to use several specific
interaction techniques to help the user find his/her way around all the combina-
tions. These techniques include (1) highlighting an entire case when the mouse
hovers over one of the visual items that compose the case; in the event the item is
“buried” in a chain of nested cases, we plan to use degree-of-interest visualization
techniques [6] to make the highlighting of each of the nested cases dependent
on its position in the chain; (2) providing statistics about all cases rooted at a
cluster selected by the user; (3) providing an overview map, as well as global
statistics on the totality of cases in the model outline; and (4) allowing the user
to query the set of all cases (e.g., to search for occurrences of some literal in
cluster and box labels).

In Sect. 2.3, we mentioned that the construction of a model outline for an
input expression C involves the simplification of C. The definition of the set
of simplification rules depends on how much reasoning power we want model
outlines to have, or, equivalently, how close to the syntactical structure of C we
want the model outline to be. For instance, we may want to detect unsatisfiable
concept expressions (e.g., ∀R.¬C u ∃R.C B ⊥). In cases like this, it might
be interesting to present to the user the sequence of rewrite steps performed,
possibly in animated form.

Our presentation in this paper has considered the meaning of concept expres-
sions with respect to empty TBoxes, RBoxes and ABoxes. If the user is working
in the context of an ontology, a visualization tool based on model outlines would
certainly be more useful if it took into account the axioms about concepts, roles
and individuals present in the ontology. For example, the TBox could be used to
detect inconsistent boxes (i.e., those where the box label is inconsistent with the

Visualization of Description Logic Models 11

label of some cluster in the box)4. The tool could also detect situations where
different clusters in a box can be merged (because the clusters’ labels represent
concepts that are not necessarily disjoint according to the TBox), leading to the
construction of a minimal model outline in a certain sense.

Work in progress on model outlines includes the investigation of all the points
discussed in this section, as well as (1) the conduction of experiments with users
from different backgrounds to elicit additional requirements that a visualiza-
tion/editing tool should meet; (2) the development of a prototype of such a
visualization/editing tool, maybe in the form of a plug-in for the Protégé-OWL
ontology editor; (3) the extension of the technique to deal with concept lan-
guages more expressive than ALCN , such as the one associated with OWL 1.1;
and (4) the conduction of deeper comparative studies with other visualization
frameworks and tools, such as visual query languages for ontologies (e.g., [5])
and ontology browsers that attempt to follow a more semantically-oriented style
(e.g., [7, 8]).

References

1. Borgida, A., Franconi, E., Horrocks, I., McGuinness, D.L., Patel-Schneider, P.F.:
Explaining ALC subsumption. In: International Workshop on Description Logics.
(1999)

2. McGuinness, D.L., da Silva, P.P.: Explaining answers from the semantic web: the
inference web approach. Journal of Web Semantics 1(4) (2004) 397–413

3. Horridge, M., Drummond, N., Goodwin, J., Rector, A., Stevens, R., Wan, H.: The
Manchester OWL syntax. In: OWL: Experiences and Directions. (2006)

4. Rector, A., Drummond, N., Horridge, M., Rogers, J., Knublauch, H., Stevens, R.,
Wang, H., Wroe, C.: OWL pizzas: Practical experience of teaching OWL-DL: Com-
mon errors & common patterns. In: Engineering Knowledge in the Age of the
SemanticWeb. Volume 3257 of LNCS. (2004)

5. Fadhil, A., Haarslev, V.: OntoVQL: A graphical query language for OWL ontologies.
In: International Workshop on Description Logics. (2007)

6. Card, S., Nation, D.: Degree-of-interest trees: A component of an attention-reactive
user interface. In: International Conference on Advanced Visual Interfaces (AVI02).
(2002)

7. Krivov, S., Williams, R., Villa, F.: GrOWL: A tool for visualization and editing of
OWL ontologies. Journal of Web Semantics 5(2) (2007) 54–57

8. Bosca, A., Bonino, D.: OntoSphere3D: A multidimensional visualization tool for
ontologies. In: 7th International Conference on Database and Expert Systems Ap-
plications (DEXA), Los Alamitos, CA, USA, IEEE Computer Society (2006)

4 The tool would have to invoke an external reasoner to obtain such information.

