
Rewriting Rules into SROIQ Axioms

Francis Gasse1, Ulrike Sattler2 and Volker Haarslev1

1 Concordia University, Montreal, Quebec, Canada
{ f gasse,haarslev } @cse.concordia.ca,

2 University of Manchester, UK
sattler@cs.man.ac.uk

Abstract. Description Logics are a family of very expressive logics but
some forms of knowledge are much more intuitive to formulate otherwise,
say, as rules. Rules in DL can be dealt with two approaches: (i) use rules
as they are knowing that it leads to undecidability. (ii) or make the rules
DL-safe, which will restrict their semantic impact and, e.g., loose the
nice “car owners are engine owners” inference. Here, we offer a third
possibility: we rewrite the rule, if it satisfies certain restrictions, into
a set of axioms which preserves the nice inferences. In this paper, we
describe the rewriting technique and prove that it does really preserve
the semantics of the rule. We have implemented the rewriting algorithm
and have practical results.

1 Introduction

Recent advances in very expressive description logics [1] have made this family of
logics capable of modeling some very complex knowledge. However, some forms
of knowledge are easier to formulate as rules even if they are expressible as DL
axioms. To deal with such rule encoded knowledge, one has two options: 1) either
use it as is with, say, Hoolet [2], knowing that it leads to undecidability. 2) or
”O(x)-ify” it to make it DL-safe [3], but then we restrict its semantic impact
and, e.g., loose the nice “car owners are engine owners” inference. In this paper
we present a technique to rewrite a restricted form of tree-shaped rules into DL
axioms using the features introduced in SROIQ. The proposed technique has
some very desirable characteristics, namely that (i) we can use standard DL
reasoners, (ii) rules can be directly embedded into the knowledge base (KB) so
we do not need a rule format standard, (iii) it does not require DL-safety to
ensure termination and (iv) it can be used to convert existing SWRL [4] rules
that satisfy the restrictions. However, since we only rewrite the rules, we do not
add any expressivity to the logic but the rewriting uses SROIQ’s constructs in
a way that, to the best of our knowledge, has never been presented to encode
rules in DL axioms.

Here are a few examples of the rules this rewriting can handle: (i)R(x, y) ∧
R(x, z)∧C(y)∧D(z) → C(x) (ii)R(x, y)∧S(y, z) → S(x, y) (iii)hasOffspring(y, x)∧
hasParent(x , y)∧hasSibling(y, z)∧Man(z) → hasUncle(x , z). The rule (i) is triv-
ial to express in an axiom and is thus obviously rewritable. The rules (ii) is also

2

trivially rewritable in SROIQ. The rule (iii) is much more interesting because it
is not obvious to rewrite, even for an experienced DL user. Hence the motivation
of this paper.

2 Preliminaries

We will now introduce the basic concepts and notations used in this paper,
in particular the DL SROIQ, rules and graph conceptualization of rules.

2.1 The DL SROIQ

SROIQ is the logical foundation of OWL 1.1 and some of the constructs it
introduces are used extensively to rewrite the rules. We introduce only these
features we use to rewrite the rules: the Self concept and the Role Inclusion
Axiom (RIA). For more information on SROIQ, the reader is referred to [5].

Complex RIA Complex role inclusion axioms are constructs of the form
R ◦ S v T where ◦ is a binary composition operator. For example1, w.r.t. the
axiom owns ◦ hasPart v owns, and the fact that each car contains an engine
Car v ∃hasPart.Engine, an owner of a car is also an owner of an engine, i.e.,
the following subsumption is implied: ∃owns.Car v ∃owns.Engine. However,
SROIQ requires the role hierarchy Rh to be regular. Regularity restricts the
form of RIA allowed in Rh so we will introduce it. To define regularity, we first
define a relation ≺ over the set of roles R{R−|R ∈ R} that is irreflexive, tran-
sitive and also satisfies S ≺ R ⇐⇒ S− ≺ R for all roles R and S. A RIA l v̇R
is ≺-regular if R is a role name and:

1. l = RR , or

2. l = R−, or

3. l = S1, ..., Sn and Si ≺ R for all 1 ≤ i ≤ n , or

4. l = RS1, ..., Sn and Si ≺ R for all 1 ≤ i ≤ n, or

5. l = S1, ..., SnR and Si ≺ R for all 1 ≤ i ≤ n.

Finally, a role hierarchy Rh is said to be regular if there exists a relation ≺ on
roles such that each RIA in Rh is ≺-regular.

Self The Self construct allows to express “local reflexivity”, i.e., to model a
role that has the same individual for antecedent and successor. For example1,
the concept “narcissist” can be defined as ∃likes.Self . The formal semantics of
this construct are (∃R.Self)I = {x|〈x, x〉 ∈ RI}.

1 examples taken from [5]

3

2.2 Rules

We now formally define the rules and how they are interpreted w.r.t an inter-
pretation.

Definition 1. Let X be a set of variables disjoint from role or concept names.
An atom is either a concept atom C(x) or a role atom R(x, y), for C a (possibly
complex) SROIQ concept name, R a (possibly non-simple) role name and x, y
variables from X. A rule is an expression of the form A1∧A2∧...∧An → H where
Ai and H are atoms of either form, and the variables in H occur in some of the
Ai. Given a rule r, we use head(r) = H for its head, body(r) = {A1, . . . , An}
for its body and Var(r) for the variables it uses.

In this definition, we have made three restrictions: (1) the variables in the
head must occur in the body: this is the standard safety restrictions on rules
(which is unrelated to DL-safety). (2) We only allow for role names in a rule,
and not for inverse roles. This is without loss of generality since we can replace
each R−(x, y) with R(y, x) preserving its semantics.(3) We do not allow for
individual names in a rule. Again, this is without loss of generality since we
can, for example, replace each C(a) with C(xa), {a}(xa). We have made the
latter two restrictions to make the following presentation easier—obviously, in
our implementation, the user can write rules with inverse roles and individual
names, and these replacements will be taken care of by our implementation.

Also, a rule has to be connected. A rule r is connected if there exists for all
variables x,y in r a sequence x1....xn such that x1 = x and xn = y and for all
1 ≤ i < n there exists a role R such that R(xi, xi+1) ∈ r or Inv(R)(xi+1, xi) ∈ r.
From now on, when we use “rule”, we implicitly mean “connected rule”. We now
introduce rule normalization, a technique defined as follows: for all roles R and
S, such that R |= R ≡ S−, replace all atoms S(x, y) in the rule with R(y, x).
We require the rules to be normalized to simplify the rewriting.

Definition 2. Let I be an interpretation that is a model of a KB K and π be a
mapping Var(r) → ∆I where r is a rule. We write

– I |=π C(x) if π(x) ∈ CI

– I |=π R(x, y) if (π(x), π(y)) ∈ RI

For a set of atoms Γ , we write I |=π Γ if I |=π at for all at in Γ . We say that
I satisfies a rule r if, for all π, I |=π body(r) implies that I |=π head(r).

In this paper, we define the rewriting of a single rule into DL axioms w.r.t.
a knowledge base. To extend it to a set of rules, we rewrite rules sequentially
to avoid any inconsistent states. That follows from the non DL-safety of the
rewritten rules, which implies that a rule can cause changes in either the concept
or the role hierarchy. Also it is to be noted that for similar reasons, two rewritings
of a given rule base might yield different results if the ordering of the rules
changes.

4

2.3 Rules as Graphs

In this paper, we often refer to graph conceptualization of the rules. We do
so because it allows us to state restrictions and algorithms in an elegant way.
Furthermore, it is a well-known paradigm that is rather intuitive in this context.
We will now introduce the relevant graph related notions. A rule graph is a
directed labeled graph induced by the body of the rule. A labeled graph has the
following structure G = (V, E, `V), with respect to two alphabets ΣV and ΣE

(which in this context are respectively concept names and roles names), where:

– V is a finite set of nodes,
– E ⊆ V × ΣE × V is a ternary relation describing the edges (including the

labeling of the edges) and
– `V : V → ΣV is a function describing the labeling of the nodes.

Given a rule r, its graph is defined as follows. For every concept atom of the
form C(x) in r, we have that x ∈ V and C ∈ `x. For every atom of the form
R(x, y) (x 6= y), we have that x, y ∈ V and 〈x, R, y〉 ∈ E. For every atom of
the form R(x, x), we have that x ∈ V and ∃R.Self ∈ `x. The head of the rule is
not included in its rule graph, but we keep track of the node(s) it references and
keep it for later use. We now introduce the notion of a skeleton of a rule graph.

Definition 3. A graph is a skeleton with respect to a role hierarchy R if there
are no edges in E that are implied by other edges in E. We say that an edge
〈x, R, y〉 in a graph G is implied, if for all interpretation I for which we have
I 2 G we also have I 2 G/〈x, R, y〉.

Let us now explain the definition of an implied edge. If there exists an inter-
pretation for which we don’t have I 2 G/〈x, R, y〉, it means that removing this
edge undeconstrains the model, so it is not implied by the remaining edges. If no
such interpretation exists, this edge is implied by the remaining ones. It is the
only relevant case since any interpretation that models G trivially models any
subgraph of G. The reason we use skeletons is that by removing implied edges
from the rule graph we maximize the chance that it satisfies the restrictions we
impose on the form of the rules (see next section). We now introduce a new
relation, ∈, to simplify the writing of some expressions. The ∈ relation is an ex-
tension of the ∈ relation in such a way that it covers the inverse elements. Let R
be a role and x, y be variables. 〈x, R, y〉∈E if 〈x, R, y〉 ∈ E or 〈y, Inv(R), x〉 ∈ E.
Let G be a rule graph, x, y and z be elements of VG and R and S be elements
of ΣEG

. A skeleton of G is obtained by applying the following rules to G until
none is applicable anymore:

1. Let R be a transitive role w.r.t. R. If 〈x, R, y〉, 〈y, R, z〉 and 〈x, R, z〉∈E, then
remove 〈x, R, z〉 from E.

2. Let R be a super-role of S w.r.t. R. If 〈x, R, y〉∈E, 〈x, S, y〉∈E and R 6= S
then remove 〈x, R, y〉 from E.

3. Let a RIA of the form R1 ◦ R2. . . Rn v S be in R, if 〈x1, R1, x2〉,. . . , 〈xn,
Rn, xn+1〉 ∈E and 〈x1, S, xn+1〉∈E, then remove 〈x1, S, xn+1〉.

5

All the skeletons of a graph are equivalent. This follows from the semantics
of equivalent, transitive roles, role hierarchies and RIAs since we only remove
the edges from the rule graph that are implied by the remaining ones according
to their respective semantics. From now on, we will assume that all rule graphs
are skeletons.

3 Admissible Rules

Before describing the rewriting process we must specify what type of rules are
admissible to be rewritten. These restrictions follow from the encoding of the
rules into SROIQ. When dealing with multiple rules, they are added sequen-
tially so that we ensure that they are admissible w.r.t. to each other (since a
rule can modify the role hierarchy). Different conditions apply to the two types
of rules so we will introduce them separately.

Definition 4. A rule graph G is concept-headed rule admissible if, seen as an
undirected graph, it is a tree, i.e., does not contain any cycle.

Definition 5. We introduce the main chain of a role-headed rule graph, it is
the path between (inclusively) the two nodes referenced in the rule’s head. A rule
graph G, with role R as head, is role-headed rule admissible if:

1. It is a tree when seen as an undirected graph,

2. Let l be the list of roles of the main chain. The RIA l v̇R must satisfy the
restrictions mentioned in Section 2.1,

3. If R is the first(resp. last) role in the main chain, then the first(resp. last)
node of the main chain does not contain any concept assertions and no other
edges is connected to it.

These definitions of admissible rules are complete, meaning that the rewriting of
any rule not satisfying these restrictions would yield an invalid SROIQ KB and
that all rules expressible in SROIQ satisfies these restrictions. The normaliza-
tion and skeletonization steps ensure that varying the syntax of a rule does not
alter the way it is treated.

4 Rewriting Process

We will now describe the rewriting technique and its different steps. The rewrit-
ing is composed of two steps : the graph folding, in which we convert nodes and
edges into labels of other nodes so that only the nodes referenced in the head
are left, and the rule insertion, in which we rewrite what is left of the rule graph
into a DL axiom.

6

4.1 Graph folding

The rule graph has to be rolled-up before we insert the rule in the KB. The two
types of rules have different forms of rolled-up graphs. The rolled-up graph of a
concept-headed rule is a single node and the folded graph of a role-headed rule
is the rule’s main chain. First, we will describe the rolling-up technique and then
how to roll-up each type of rule graph.

Roll-up a node This technique is widely used and known for DL, the reader
may refer to [6] for more information, so we will only briefly present the technique
to roll-up a single node into its ancestor, from which the general case of rolling
up a tree is obvious. Given a rule tree-shaped graph G, to roll-up a leaf node,
nl, into its predecessor, np, is a very simple procedure. Let R be an element of
ΣE such that 〈np, R, nl〉 ∈ E. We just need to extend the label of np with the
following u∃R.(`nl) and remove nl and the edge 〈np, R, nl〉 from the graph.

Fold a concept-headed rule In this procedure, we use the notion of the root
of a concept-headed rule’s graph. The root is the node that is referenced in the
head of the rule. The whole graph will be folded into that node. We do so simply
by recursively rolling-up all the neighbors of the root into it.

Fold a role-headed rule The algorithm to fold a role-headed rule takes a rule
graph G as input and its output is the graph folded into the main chain. We
consider a graph SG which is the subgraph of G obtained by removing the edges
that are part of the main chain. By definition, each connected components of
that graph will contain exactly one node that is part of the main chain. We
just have to roll-up each connected components into the main chain’s node it
contains.

4.2 Rule insertion

The folded rule graph is now ready for insertion into the KB. Depending on
the type of rule, we will insert either a GCI or a RIA. Let us now describe the
procedure to construct these axioms.

Concept-headed rule The folded graph of a concept-headed rule is its root
node. The label of that node is the rewriting of the rule’s body, that is in fact
the conjunction of the rolling-up of the root’s neighbor(s). So the insertion of a
rule is simply the addition of a GCI of the form `root v C, where `root is the
label of the root node and C the concept of the head atom.

Role-headed rule The folded graph of a role-headed rule is its main chain.
We create an RIA from it with the following procedure, where w is a role string
that is initially empty. Steps 1.a and 1.b are referred to as “label removal”.

7

1. For every node n(starting with the ancestor of the head atom)
(a) Add the axiom `n v ∃instC.Self to the KB, where instC is a fresh role

name and `n is the label of node n
(b) Append the role instC to the string w
(c) Append the label of the edge leading to the successor of n to w

2. Add the RIA w v R to the KB, where R is the role in the head of the rule.

4.3 Example

In order to clearly illustrate how the rewriting works, we will now rewrite a
rule step by step. The rewriting of concept-headed rules is quite intuitive so we
will rewrite a role-headed rule. Since the “uncle” example was used so often to
demonstrate the motivations to have rules integrated with DLs, we will use it for
the example. Obviously, we can write a RIA to model this problem in SROIQ,
e.g., hasParent ◦hasBrother v hasUncle, but we will assume that we do not have
hasBrother to show the potential of the rewriting. Let us assume that the rule is
formulated as follows: hasOffspring(y, x) ∧ hasParent(x , y) ∧ hasSibling(y, z) ∧
Man(z) → hasUncle(x , z). The rule graph of this rule is shown in Figure 1.

•x •y •z:Man
hasParent

hasOffspring

hasSibling

Fig. 1. The rule graph of the example

The first step is to make this rule graph a skeleton by removing implied
edges. In our example KB, we have hasParent v hasOffspring−. It follows that
the hasOffspring edge in the rule graph is implied by the hasParent edge, so the
hasOffspring edge has to be removed from the graph. Now that the rule graph is
a skeleton, we can proceed with the folding of the rule graph. However, since the
folding of a role-headed rule graph consists of folding the subgraphs spawning
from nodes of the main chain, this rule graph is already folded. We can now
build the rule’s axiom and insert it into the KB. For that we have to traverse
the graph and build the role chain that we will add as a subrole of the head.
Here is how to build a list of roles, w, for each nodes and edges:

– Node x:
• No label in node.
• Add hasParent to w.

– Node y:
• No label in node.

8

• Add hasSibling to w.

– Node z:

• Add Man v ∃instMan.Self to the KB and instMan to w.

• No successor.

It is to be noted that any label that would result from a rolling-up would
be treated exactly the same way Man was. The content of w would then be
hasParent , hasSibling, instMan . The last step is to insert the RIA modeling the
rule in the KB, which is of the form w v R where R is the role in the head. The
axiom for this example is hasParent ◦ hasSibling ◦ instMan v hasUncle.

5 Correctness of the rewriting

The rewriting of a rule obviously requires the addition of axioms to the KB. In
order to complete our proofs, we have to introduce the notion of an extension of
an interpretation.

Definition 6. I ′ is an extension of I if

1. ∆I = ∆I
′

2. if I |= K then I ′ |= K′, where K ⊆ K′

3. CI = CI
′

for all concepts C in K

4. RI = RI
′

for all roles R in K

This notion of an interpretation’s extension is required since the rewriting creates
axioms, added to a KB K′, so we will be working with two KBs and we need to
have two interpretations that agree on their common part. For the remaining of
this section when we refer to π, it is to be a mapping from V ar(r) → ∆I where
r is a rule. We will abstract the fact we are dealing with rules and consider only
the body of the rules. Since we are not modifying the head and folding the graph
around the variables referenced in the head, we can do so w.l.o.g. In order to
prove the correctness of the rewriting, we will show that the steps composing the
folding of a graph are valid and then show that the insertion of a rule maintains
its semantics.

Lemma 1 (Label removal). Let I be a model of K, b be the body of a rule
and π be a mapping.

1. If I |=π b, then there is a label removal blr of b and an interpretation I ′,
extension of I, such that I ′ |=π blr

2. If I |=π blr for a label removal blr of b, then I |=π b.

For the proof, we will define b as C(x). Following the label removal we described,
K′ would be defined as K ∪ {C v instC.Self} and blr as instC(x, x). To define
I ′, we extend I with (instC)I

′

= {(a, a) ∈ ∆I
′

× ∆I
′

| a ∈ CI}.

9

Proof (of (1)). Since K′ is only augmented by a RIA with a fresh role name
on the right hand side and I ′ |=π K (by definition of an extension), it is trivial
to see that I ′ |=π K′. To show that I ′ |=π blr, we will prove by contradiction
so we assume that I ′

2
π blr, i.e., I ′

2
π instC(x, x). We know that I ′ |=π b

so π(x) ∈ CI
′

. The axiom added in K′ gives that (π(x), π(x)) ∈ instCI
′

. The
semantics of blr being (z, z) ∈ instCI

′

, we just have to consider z = π(x) to
have a contradiction. ut

Proof (of (2)). Since K ⊆ K′ and I |= K′, it trivially models K. We will prove
by contradiction for I |=π b, so let’s assume that I 2

π b, i.e. I 2
π C(x). Since

I |=π blr, we have (π(x), π(x)) ∈ instCI . Since instC is a fresh role name, it
can only be introduced by the RIA which means that π(x) ∈ CI , which gives us
a contradiction. ut

Lemma 2 (Rolling-up). Let I be a model of K, b be the body of a rule and π
be a mapping.

1. If I |=π b, then there is a rolling-up bru of b and an interpretation I ′,extension
of I, such that I ′ |=π bru

2. If I |=π bru for a rolling-up bru of b, then I |=π b.

Given that this technique is widely known and used, we will not give a proof for
it here. The reader may refer to [6] for further information.

By using Lemmas 1 and 2, we can formulate the following lemma which shows
that the folding of a rule graph is semantically equivalent to the original.

Lemma 3. Let b be the body of a rule. The folding bf of b, obtained by any
composition of the rolling-up and label removal, is equivalent to b.

Proof. The operations used in the folding of a rule graph have been shown to
yield equivalent graphs. The composition of any of these operations obviously
also yields equivalent output. This can be shown as follows. Let f be a function
that yields a result equivalent to its output, i.e. f(x) ≡ x. It trivial to show that
f(f(x)) ≡ x since we can replace f(x) by x since they are equivalent. ut

Theorem 1. Let r be a rule of the form br → hr, where br is the body and hr

is the head, and a be the axiom rewriting if this rule of the form ab v ah. We
then have that an interpretation I that models K and satisfies r iff there exists
an interpretation I ′, extension of I, that models K′ and satisfies a. K′ is defined
as K augmented with the axioms generated by the folding and a.

Proof. By Lemma 3, we know that br is equivalent to ab. It is trivial to see that
the heads are equivalent. For the “if” direction, we have I |= r and since I ′ is
an extension of I, it follows that I ′ |= r. That means that I ′ |= br, br being
equivalent to ab, we also have I ′ |= ab. Since I ′ |= K′, which contains ab v ah,
we have that I ′ |= a.

For the “only if” direction, we have I ′ |= a, thus I ′ |= ab and by Lemma 3
I ′ |= br. By the definition of an extension and the fact br only references roles
and concepts in K, it follows that I |= br. The same applies to the head so
I |= hr. That shows that I |= br implies I |= hr, thus I |= r. ut

10

6 Conclusion

We have presented a technique to rewrite a certain form of tree-shaped rules
into DL axioms. This technique does not add expressive power to SROIQ,
but it facilitates the use of existing constructs in a non-trivial way to model
knowledge intuitively expressed as rules. It also offers some advantages over
previous approaches. It lets us drop the restriction to DL-safety of the rules. It
is compatible with existing tools and reasoners. Since rules are embedded in the
KB, we avoid using another formalism to save them. These two characteristics
combined gives the most interesting feature of the technique, when compared to
previously proposed technique: it is readily usable in practice. We implemented
the rewriting and we have tested it. The results show that the cost of reasoning
over a KB containing rewritten rules is reasonable. That is, the reasoners fare
well with the combination of RIA and self-restriction we use. Furthermore, it
also scales very well, both with regards to the size of the KB and the number
of rules. In order to make the most of this practical usability, we are currently
developing a plug-in3[7] for Protégé4 that enables the creation, either in textual
or graphical mode, and the insertion of rules in KBs as axioms or as SWRL
rules if they are not admissible, thus maximizing expressivity of the KB. In
future work, we intend to investigate how SROIQ and/or the rewriting could
be extended to handle a wider range of rules.

References

1. Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F., eds.:
The Description Logic Handbook: Theory, Implementation, and Applications. Cam-
bridge University Press (2003)

2. Tsarkov, D., Riazanov, A., Bechhofer, S., Horrocks, I.: Using Vampire to reason
with OWL. In McIlraith, S.A., Plexousakis, D., van Harmelen, F., eds.: Proc. of the
3rd International Semantic Web Conference (ISWC 2004). Number 3298 in Lecture
Notes in Computer Science, Springer (2004) 471–485

3. Rosati, R.: DL+log: Tight integration of description logics and disjunctive datalog.
In: Proceedings of the Tenth International Conference on Principles of Knowledge
Representation and Reasoning (KR 2006). (2006) 68–78

4. Horrocks, I., Patel-Schneider, P.F., Boley, H., Tabet, S., Grosof, B., Dean, M.:
SWRL: A semantic web rule language combining OWL and RuleML. W3C Member
Submission (21 May 2004) Available at http://www.w3.org/Submission/SWRL/.

5. Horrocks, I., Kutz, O., Sattler, U.: The even more irresistible SROIQ. In: Proc.
of the 10th Int. Conf. on Principles of Knowledge Representation and Reasoning
(KR 2006), AAAI Press (2006) 57–67

6. Tessaris, S.: Questions and answers: reasoning and querying in Description Logic.
PhD thesis, University of Manchester (2001)

7. Gasse, F., Haarslev, V.: Dlrule: A rule editor plug-in for protégé. Proceedings of
the OWLED 2008 Workshop on OWL: Experiences and Directions (2008)

3 http://users.encs.concordia.ca/~f_gasse/
4 http://protege.stanford.edu

