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Abstract. We propose an approach for extending domain knowledge represented
in DL ontology by using knowledge extraction methods on ontology assertions.
Concept and role assertions are extracted from the ontology in the form of asser-
tion graphs, which are used to generate a formal context manipulated byFormal
Concept Analysis methods. The resulting expressions are then represented as DL
concepts and roles that can be inserted into the initial ontology after validationby
the analyst. We show, through a real-world example, how this approach has been
successfully used for discovering new knowledge units in a pharmacogenomics
ontology.
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1 Introduction

At present, many resources in a given domain, e.g. life science, are available. These
resources have many forms: databases, thesauri, ontologies, documents, etc. One ob-
jective of Knowledge Discovery in Databases (KDD) methods is to extract reusable
and significant knowledge units from such resources. Advances in Semantic Web tech-
nologies promotes the formalisation and management of suchknowledge units within
Description Logics (DL) ontologies. A great challenge is totake advantage of these
formal ontologies for guiding knowledge discovery [1]. In this paper, we present an
original KDD process carried out in the context of a DL ontology. The objective is to
extract knowledge units from assertions (involving individuals) lying in the ontology.
We propose to apply Formal Concept Analysis methods for extracting regularities from
ontology assertions that will be used to refine the initial ontology. To achieve this task,
assertion graphs, connecting ontology individuals, are used as a basis for generating a
formal context, then manipulated by FCA methods.

Contrasting current methods of ontology refinement based onNatural Language
Processing using text corpus as knowledge resources [2], this work proposes the analy-
sis of existing assertions for refining an ontology. In [3], astudy is presented on the use
of FCA for computing the hierarchical structure of an ontology. More recently, in [4], a
complement study shows how to complete the terminological as well as the assertional
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part of ontologies. In [5] FCA and Description Logics are combined with different ob-
jectives for enriching a concept lattice (withinaugmented context) on the basis of DL
knowledge. In this paper, we use concept lattice to acquire new knowledge in a DL
ontology. We firstly present the motivation of our approach,secondly introduce notions
of DL and FCA needed for understanding the paper. Third, we detail our orignial ap-
proach that we call Role Assertion Analysis (RAA). Then we finally illustrate it with a
life science application.

2 Motivation

Life science processes are addressed in many sophisticatedmethods that produce large
volumes of complex and highly interrelated data. It is consequently critical in this do-
main to take into account amounts of available data and knowledge. A typical example
is pharmacogenomics that studies the implication of inter-individual genomic variations
in drug response. Data and knowledge relative to genomic variations, drugs, genotype-
phenotype interactions, and clinical trials have to be exploited by expert analysts to
enlighten on hidden relationships between drug treatments, genomic variations, and
phenotype traits.

A pharmacogenomic ontology, calledIDANAT2 ONTOLOGY, was produced in the present
study for illustrating our ontology refinement approach. The IDANAT2 ONTOLOGY is inspired
from SO-PHARM, which was previously described in [7] and is available on the OBO-
Foundry web site [8]. TheIDANAT2 ONTOLOGY contains twenty six concepts and twenty roles
about pharmacogenomics: e.g. concepts that represent drugtreatment, phenotype, and
genotype of patients. The ontology is instantiated on the basis of a real pharmacoge-
nomic clinical trial: IDANAT2, which is performed to study involvement of variations
in theNAT2gene in responses to tuberculosis treatment with isoniazid(inh) [9]. A total
of 12 patients, with their treatments, their genotypes, andphenotypes have been used
for instantiating theIDANAT2 ONTOLOGY.

Our hypothesis is that novel knowledge units relevant in thefield of pharmacoge-
nomics are hidden inside assertions. Expected ontology refinements are followings:
characterisation of the patient panel (e.g. all patients are smokers), identification of sub-
groups reacting differently (e.g. patients with slow/rapid drug metabolism), and identi-
fication of relations between treatment, genotype and phenotype factors (e.g. high dose
of inh, version 5* of the geneNAT2, and an adverse response).

3 DL ontology and Formal Concept Analysis

3.1 DL ontology

A DL ontology is a representation of a domain knowledge expressed in DL formalism
[10]. A DL ontology usually consists of two parts: the terminological part or TBox
T , and the assertional part or ABoxA. TBox defines concepts in relation with other
concepts according to hierarchical and non-hierarchical relationships. The semantics
of concept descriptions is defined in terms of aninterpretationI that consists of a
non-empty set∆I and an interpretation function, which assigns to every concept C a
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setCI ⊆ ∆I and to every roleR a binary relation between a domain and a co-domain
RI ⊆ ∆I × ∆I. A role R can have an inverse roleR− whose interpretation is

(R−)I = {(b,a) ∈ ∆I × ∆I| (a,b) ∈ RI}

The ABox includes individuals and their relationships in the form of conceptand
role assertions. Such assertions are formula that describe the instanciation of concept
and roles with individuals. An example of concept assertionis: “Patient (pa01)”
meaning thatpa01 is an instance of the conceptPatient. An example of role asser-
tion is: “hasClinicalItem (pa01, tuberculosis)” meaning that the individualpa01 is
related to the individualtuberculosisthrough the rolehasClinicalItem .

The termDL ontologyused in this paper, refers conjointly to TBox and ABox also
calledDL knowledge base.

In this paper two specific constructors of DL are used. First,the “fills” constructor,
denoted byR : b, that is a concept constructor associating individual names to the co-
domain of a roleR . Its semantics is defined as

(R : b)I = {a ∈ ∆I| (a,bI) ∈ RI} (1)

andb is said to be the “filler” ofR. R : b is equivalent to the more usual “hasValue”
notation∃ R.{b}. Second, the role composition constructor, that is a role constructor,
denoted byR ◦ S, for two rolesR andS is interpreted as

(R ◦ S)I = {(a, c) ∈ ∆I × ∆I| ∃b.(a,b) ∈ RI ∧ (b, c) ∈ SI}. (2)

The combination of the two constructors produces an expression such asR◦S : b, which
is equivalent to∃ R.(∃ S.{b}).

3.2 Formal Concept Analysis

Formal Concept Analysis (FCA) is the process of abstractingconceptual descriptions
from a set of objects described by attributes [11]. Formally, FCA studies aformal con-
textK that associates a set of objectsG to a set of attributesM through an incidence
relationIR in G ×M. An example of formal context is depicted in Table 1, whereG is
a set of patients andM a set of patient attributes. Aformal concept, issued from a for-
mal contextK = (G,M,IR), is defined as a pair (A, B) whereA is a subset of objects,
theextentof the concept, andB is a subset of attributes, theintentof the concept. The
definition of the concept (A, B) is based on a Galois connection defined by the dual′

application that transforms a set of objectsA and a set of attributesB as follows

A′ ≔ {m ∈ M| ∀a ∈ A : (a,m) ∈ IR},

B′ ≔ {g ∈ G| ∀b ∈ B : (g,b) ∈ IR}.

A formal concept (A, B) verifiesA = B′ and duallyB = A′. Formal concepts can be
hierarchically ordered by inclusion of their extents. Thisorder induces a lattice, called
theconcept latticeof K . Such a lattice is always complete meaning that for any pair of
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concepts there exists a unique smallest superconcept and a unique largest subconcept.
An example of concept lattice is given in Figure 5.

Thanks to its mathematical properties, a concept lattice can be used as an interme-
diate support structure to mine multiple data dependencies, such as Association Rules
AR, that hold in a context [12].AR are probabilistic data dependencies having the
form B1 ⇒ B2. B1 (theantecedent) andB2 (theconsequent) are sets of attributes and
B1⇒ B2 expresses that the presence of attributes inB1 implies the presence of attributes
in B2 with a specifiedsupportandconfidence:

support(B1⇒ B2) =
|(B1 ∪ B2)′|
|G|

con f idence(B1 ⇒ B2) =
|(B1 ∪ B2)′|
|B′1|

AR are usually computed from Frequent Itemsets, i.e. sets of attributes with a support
greater than aminimum support. Since the number ofAR extracted from a formal
context can be huge , reduced sets ofAR need to be identified [13] [14]. In this work,
we used the set ofReduced Minimal Non-Redundant RulesRMNR [15], which is the
transitive reduction ofMinimal Non-Redundant RulesMNR defined by Kryszkiewicz
in [14]. RMNR represents a reduced set of rules with a minimal antecedent and a
maximum consequent, from which all other rules can be derived. The calculation of
RMNR used in this work takes benefit of the intermediate structureprovided by a
formal lattice. This calculation is based on the Next Closure Algorithm of B. Ganter
[13].

4 Role Assertion Analysis

Role Assertion Analysis (RAA) is a semi-automatic process.It takes as input a DL
ontologyO = (T ,A), a DL concept descriptionC0, and a parameter named maximum
depthdmax, and returns as output a refined version of the original ontologyO with new
concept descriptions, new roles, and new role assertions.

Figure 1 depicts the characteristics of this approach that could be divided in four
main steps:

(a) extraction of the set of assertion graphs associated with a specified conceptC0,
(b) transformation of assertion graphs into a formal context,
(c) analysis of the formal context with FCA, and
(d) interpretation of FCA results in terms of new DL conceptsand roles.

These four steps could be compared to extraction, transformation, mining, and in-
terpretation steps, classically described in the KDD process. This is detailed in next
subsections.

4.1 From ontology to assertion graphs

Firstly, the analyst has to define a conceptC0 within the ontologyO from which the set
of instancesA0 will be considered for RAA. In practice, the description ofC0 is not
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Fig. 1. Overview of the Role Assertion Analysis (RAA) approach. Action tagged with ∗ denotes
interactive steps.

constrained. It can be a concept that is explicitly defined inO as well as an undefined
concept, described with DL constructors, and concepts fromT .A0 is defined as the set
of individualsa that are instances ofC0 thus satisfyingA0 = {a | C0(a)}.This manual
step is cucial since it enables the analyst to focus on a subset of individuals relevant to
characterise. Section 5 give an example of a conceptC0.

We define theassertion graph Ga = (V,E) as a rooted oriented cyclic graph with
a as root vertex, concept assertions asvertices V, and role assertion asedges E. The
assertion graph Ga = (V,E) of each individuala fromA0, is then explored in order to
compute every possible path that relates, through role assertions, individuala to other
individuals inO. This graph is explored by a depth-first search algorithm constrained by
one parameter, the maximum depthdmaxgiven as an input by the analyst (e.g.dmax= 3),
and two restrictions: (1) it is not allowed to pass more than once by a same vertex, (2) it
is not allowed to traverse an edge (that corresponds toR) and then the edge associated to
the inverse relation (that corresponds toR−). Parameterdmax limits the depth progression
of the algorithm to a maximum number of edges within a single path. Constraint (1)
guarantees the absence of cycle in generated paths, constraint (2) is a practical choice
that reduces the size of the generated formal context. It canbe demonstrated that under
this conditions, the assertion graph is finally totally (butnot minimally) covered by
paths at a maximaldmax depth. An example of assertion graph and all its derived paths
is displayed in Figure 2.
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Fig. 2.Schematization of the assertion graph of pa01 and of each generated path with dmax= 3

At the end of graph exploration, each individuala is associated with a set of paths
and sub-paths that can be described as DL concepts. For example, a path that follows
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successively edges corresponding to rolesR andS and ends on the vertex corresponding
to an individualb that instantiate the conceptCb is a representation, in the graph, of the
conceptR◦S : b. This is interpreted using constructors (1) and (2) defined in subsection
3.1 as

(R ◦ S : b)I = {a ∈ ∆I| (a,bI) ∈ (R ◦ S)I}. (3)

4.2 From assertion graphs to formal context

The task consists here in transforming the set of assertion graphsGa = (V,E) into a
formal contextK = (G,M,IR) that can be subsequently analysed with FCA methods.
Obviously enough, the set of objectG corresponds to the set of individualsA0. Mapping
the assertion graphGa to a set of attributesM according to the incidence relationIR is
more complex. For such a given graph, each computed path or sub-path (described as a
DL concept) is translated into strings that label attributes to add toM. For example the
expression (3) above is used to create at least two attributes mx,mC inM identified by
the following strings

mx ≔ R o S:b means thata is related tob by an assertion ofR ◦ S,
mC ≔ R o S:Cb means thata is related to an assertion ofCb by R ◦ S.

The attributemC is generated in the hope that more objects will display attributemC than
mx and will then contribute to produce more regularities in thecontext. Sinceb could
instantiate several concepts ofO, one path could generate several attributes of the form
of mC. The same path is also used to fill the incidence relationIR of the contextK . If a
path froma leads to the creation of attributesmx andmC, then the incidencesaImx and
aImC are filled inIR. The formal context presented in Table 1 results from this first
step.

4.3 From formal context to Reduced Minimal Non-Redundant Rules

The third step of the proposed approach consists in the extraction of regularities from
the formal context. Regularities are typically deterministic or probabilistic dependences
between attributes. The first task for analysing such regularities in the context is to
compute the concept lattice (see Figure 4 for an example). A classical algorithm to
construct a lattice is the Next Closure Algorithm [13]. Thisalgorithm has been recently
refined and compared to other existing ones by Kuznetsov and Obiedkov in [16]. Once
the concept lattice is constructed, its mathematical structure can be analysed by different
methods.This study is based onRMNR (see subsection 3.2), becauseRMNR yields
the smallest set of rules from which all valid rules can be derived.RMNR is smaller
than closed association rules and minimal non-redundant association rules. Of course,
depending on the interest of the analyst, other regularities, such as rare association rules,
could be extracted from the context [17].
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4.4 From Reduced Minimal Non-Redundant Rules to new DL concepts and
roles

The last step involves again the analyst since she has to select a subset of relevant
attributes fromRMNR for defining new DL concepts and roles. This last step presents
similarities with emerging work on Relational Concept Analysis (RCA) [18].

New DL concepts Selected attributes within a rule are translated back and expressed
as a DL concept. Formally, ifmb,md ⊆ M are selected within a rule, they are expressed
in DL as:

mb with the label R o S:b is expressed asR ◦ S : b,
md with the label T o U:d is expressed asT ◦ U : d,

and associated as follow inCnew ≔ R ◦ S : b ⊓ T ◦ U : d. This task is not limited
to association of two attributes or to compositions of two roles. Attributes of the form
of mC are similarly translated back in DL but without using the “fills” constructor. For
example, attributeR o S:Cb is translated back in∃ R ◦ S.Cb.

Once a new conceptCnew is defined, the last step is its insertion into the original
ontology. To achieve this task, the most specific conceptCsubs from T that satisfies
²O Cnew ⊑ Csubs is computed. Then, depending on analyst validation,Cnew becomes a
new concept inO such asCnew ⊑ Csubs, or alternativelyCnew description completesCsubs
description:Csubs ≡ Cnew (that could also be notedCsubs ≡ Csubs ⊓ Cnew) . The latter
occurs when the analyst observes thatCnew definition is more precise in describing what
is supposed to be represented byCsubs. Section 5 illustrates this interpretation step. We
propose an algorithm that formalises this task in [19].

New roles and/or role assertions Primarily selected attributes also lead to creating
new roles and/or new role assertions. Selected attributes are expressed as DL concept
descriptions as for the creation of new DL concepts, but are not associated and are stored
independently. The analyst is then proposed to create new rolesRnew between each pair
of “fillers”(see subsection 3.1) of new DL concepts, e.g.b andd. It is interesting to
notice that “fillers” correspond to last vertices of paths explored in the assertion graph,
and to individuals that are linked to individuals fromA0. A creation of a new role is
proposed if no role exists in the ontology that can be asserted to link “fillers” directly.
In this case, the new roleRnew is directly instanciated with corresponding “fillers”, e.g.
Rnew(b,d). In the alternative case where role already exists, the analyst chooses either to
instanciate an existing role if one is relevant or to create and instanciate a new one. [19]
gives an algorithm that details operations of this task.

5 Role Assertion Analysis in pharmacogenomics

RAA has been applied to a real-world ontology in pharmacogenomics calledIDANAT2 ONTOLOGY
(introduced in section 2) with the objective of discoveringnew knowledge units con-
cerning the pharmacogenomics of the geneNAT2. A view of some concepts, concept
and role assertions ofIDANAT2 ONTOLOGY is given in Figure 3.
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The analyst initially selects the group of all patients included in the clinical study
IDANAT2. This subgroup of instances of the conceptPatient is defined inC0 as

C0 ≡ Patient ⊓ ∃populates.{idanat2 panel},

C0 is instanciated by twelve individuals that corresponds to the twelve patients involved
in the study. Assuming a maximum depthdmax = 3, Figure 2 depicts the assertion
graph relative to the assertionC0(pa01). The figure distinguishes eight different paths
explored in the graph that reflect all relations thatpa01 has with other individuals in
IDANAT2 ONTOLOGY. The resulting contextKIDANAT2 (as explained in Section 4.2) is dis-
played in Table 1. The set of objectsG contains all patients of the clinical trial, and the
setM contains twenty-two attributes produced from paths covering all assertion graphs.
For example, the path located in Figure 2 III) is translated into the following attributes

mx ≔ hasClinicalItem:tuberculosis

mC ≔ hasClinicalItem:DiseaseDiagnostic.

The concept lattice constructed for the contextKIDANAT2 is presented in Figure 5.
Each node stands for a concept harbouringowned attributes(displayed on the top of the
node), which are attributes that distinguish the concept from upper ones, andinherited
attributes, which are inherited from upper concepts. For example, the first concept on
the left is interpreted as the subgroup of patientspa02, pa03, andpa01 sharing the local
owned attribute (hasClinicalItem:ttt failure) that does not appear in any ascendant con-
cept, and sharing inherited attributes from upper concepts, such ashasClinicalItem:NAT2 4.

RMNR are computed with aminimum supportof 0.25 and aminimum confidence
of 0.8. Consequently, the concept lattice leads to identifysix distinctRMNR. Accord-
ing to the analyst, three of these rules describe relationships which are already known,
already in the ontology, and therefore out of the scope of thestudy. The three other rules
were treated according to the process described in subsection 4.4. Table 2 describes how
they are, first, translated back in three DL conceptsCnew1, Cnew2, Cnew3, and second, ar-
ticulated with concepts of the original ontology. From the analyst point of view,Cnew1
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panel.Cnew2 stands forslow acetylatorsthat metabolize inh slowly thus accumulating
toxic metabolites in their liver (hepatotoxicity). Inversely,Cnew3 stands forrapid acetyla-
tors that metabolize the drug so quickly that it has no effect (ttt failure). Each subgroup
is associated with a different version ofNAT2gene (NAT25 andNAT24).

Table 3 describes pairs of “fillers” extracted from rules andvalidated or not (de-
noted with∅) to assert roles in the ontology. For example, the ruleAR3 enables to
identify three pairs of “fillers”. No role assertion corresponds to these pairs, but the
existing roleinteractsWith can be asserted to link pair members. The analyst proposes
to assert this role with each pair. Resulting role assertions between treatment, genotype
and phenotype are typical relevant knowledge units in pharmacogenomics.

Resulting new concepts and new roles assertion (those generated fromAR3) are
schematized in Figure 4.

Table 2.FromRMNR to new concept in the TBoxT

Rule DL concept description Refinement ofT

AR1 → Cnew1 ≡ ∃ isTreatedWith .{std inh ttt} → Cnew1 ⊑ Csubs
⊓∃ isTreatedWith.(∃ hasDrug.{inh})
⊓∃ isTreatedWith.(∃ hasDose.{5mg kg})

AR2 → Cnew2 ≡ ∃ isTreatedWith .{std inh ttt} → Csubs ≡ Csubs ⊓ Cnew2
⊓∃ hasClinicalItem .{hepatotoxicity})
⊓∃ hasClinicalItem .{NAT2 5})

AR3 → Cnew3 ≡ ⊓∃ hasClinicalItem .{ttt failure}) → Cnew3 ⊑ Csubs
⊓∃ hasClinicalItem .{NAT2 4})

Table 3.FromRMNR to new role assertions in the ABoxA

Rule Pair of “fillers” Refinement ofA

AR1 → (std inh ttt,inh), → ∅,
(std inh ttt,5mg kg), ∅,
(inh,5mgkg) ∅

AR2 → (std inh ttt,hepatotoxicity)→ ∅,
(std inh ttt,NAT2 5) interactsWith(stdinh ttt,NAT2 5),
(hepatotoxicity,NAT25) interactsWith(hepatotoxicity,NAT25)

AR3 → (std inh ttt,ttt failure) → interactsWith(stdinh ttt,ttt failure),
(std inh ttt,NAT2 4) interactsWith(stdinh ttt,NAT2 4),
(ttt failure,NAT2 4) interactsWith(tttfailure,NAT2 4)

6 Conclusion

The novelty of the RAA process described in this paper reliesin the exploitation of
role assertions as a basis for mining ontology instances. Wehave illustrated through a
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real-world example how this approach can succeed in discovering several knowledge
units that were implicitly embedded in ontology instances.Implementation of RAA
is underway in the frame of a plug-in for the ontology editor Protéǵe 4. As for any
KDD process RAA can be run in an iterative manner. First experimentations show that
relevant refinements of ontology occur gradually during successive iterations of RAA
process.
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