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Abstract. We propose an approach for extending domain knowledge reprdsente
in DL ontology by using knowledge extraction methods on ontology assertion
Concept and role assertions are extracted from the ontology in the fasser-

tion graphs, which are used to generate a formal context manipulatedrinal
Concept Analysis methods. The resulting expressions are thenea@dss DL
concepts and roles that can be inserted into the initial ontology after validation
the analyst. We show, through a real-world example, how this appr@echden
successfully used for discovering new knowledge units in a pharreacogics
ontology.
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1 Introduction

At present, many resources in a given domain, e.g. life seieare available. These
resources have many forms: databases, thesauri, ontlatfieuments, etc. One ob-
jective of Knowledge Discovery in Databases (KDD) methal$oi extract reusable
and significant knowledge units from such resources. Adssint Semantic Web tech-
nologies promotes the formalisation and management of knieledge units within
Description Logics (DL) ontologies. A great challenge istatie advantage of these
formal ontologies for guiding knowledge discovery [1]. Ing paper, we present an
original KDD process carried out in the context of a DL ongptoThe objective is to
extract knowledge units from assertions (involving indivals) lying in the ontology.
We propose to apply Formal Concept Analysis methods fometitrg regularities from
ontology assertions that will be used to refine the initigbtogy. To achieve this task,
assertion graphs, connecting ontology individuals, aesl#s a basis for generating a
formal context, then manipulated by FCA methods.

Contrasting current methods of ontology refinement baselamral Language
Processing using text corpus as knowledge resources i2jvthk proposes the analy-
sis of existing assertions for refining an ontology. In [3$tady is presented on the use
of FCA for computing the hierarchical structure of an onggloViore recently, in [4], a
complement study shows how to complete the terminologEalell as the assertional
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part of ontologies. In [5] FCA and Description Logics are dmned with diferent ob-
jectives for enriching a concept lattice (withiugmented contexbn the basis of DL
knowledge. In this paper, we use concept lattice to acquere knowledge in a DL
ontology. We firstly present the motivation of our approagtondly introduce notions
of DL and FCA needed for understanding the paper. Third, waildeur orignial ap-
proach that we call Role Assertion Analysis (RAA). Then waliinillustrate it with a
life science application.

2 Motivation

Life science processes are addressed in many sophistioathads that produce large
volumes of complex and highly interrelated data. It is copsatly critical in this do-
main to take into account amounts of available data and ledgd. A typical example
is pharmacogenomics that studies the implication of imtdividual genomic variations
in drug response. Data and knowledge relative to genomiati@ns, drugs, genotype-
phenotype interactions, and clinical trials have to be @tgdl by expert analysts to
enlighten on hidden relationships between drug treatme@isomic variations, and
phenotype traits.

A pharmacogenomic ontology, calleshnat2 ontoLocy, was produced in the present
study for illustrating our ontology refinement approache Tianarz ontoLocy is inspired
from so-puary, Which was previously described in [7] and is available oa @BO-
Foundry web site [8]. Theanat2 ontoLocy contains twenty six concepts and twenty roles
about pharmacogenomics: e.g. concepts that representrdaiment, phenotype, and
genotype of patients. The ontology is instantiated on treésbaf a real pharmacoge-
nomic clinical trial: IDANATZ2, which is performed to studywolvement of variations
in theNAT2gene in responses to tuberculosis treatment with ison{a#iji [9]. A total
of 12 patients, with their treatments, their genotypes, gimehotypes have been used
for instantiating thapanar2 ontoLocy.

Our hypothesis is that novel knowledge units relevant infiglel of pharmacoge-
nomics are hidden inside assertions. Expected ontologyerents are followings:
characterisation of the patient panel (e.g. all patier@sarokers), identification of sub-
groups reacting dierently (e.g. patients with slgvapid drug metabolism), and identi-
fication of relations between treatment, genotype and fdigpadactors (e.g. high dose
of inh, version 5* of the genBIAT2 and an adverse response).

3 DL ontology and Formal Concept Analysis

3.1 DL ontology

A DL ontology is a representation of a domain knowledge esged in DL formalism
[10]. A DL ontology usually consists of two parts: the terwlingical part or TBox
7, and the assertional part or ABoR. TBox defines concepts in relation with other
concepts according to hierarchical and non-hierarchiglaltionships. The semantics
of concept descriptions is defined in terms ofiaterpretation I that consists of a
non-empty sett’ and an interpretation function, which assigns to every ephc a
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setc? c 47 and to every rol® a binary relation between a domain and a co-domain
RY c 47 x 4%, A role R can have an inverse roks whose interpretation is

(R7)" ={(ba) € 4" x 4”| (a,b) € R"}

The ABox includes individuals and their relationships ie form of conceptand
role assertionsSuch assertions are formula that describe the instaociafi concept
and roles with individuals. An example of concept assert®r‘Patient (pa0l)”
meaning thapa0ll is an instance of the concepdtient. An example of role asser-
tion is: “hasClinicalItem (pa0l, tuberculosiy meaning that the individugba0l is
related to the individuaiuberculosighrough the rolhasClinicalItem.

The termDL ontologyused in this paper, refers conjointly to TBox and ABox also
calledDL knowledge base

In this paper two specific constructors of DL are used. FHing,fills” constructor,
denoted byR : b, that is a concept constructor associating individual reataehe co-
domain of a rolR . Its semantics is defined as

(R:b)! ={ae 4’| (ab’) er) 1)

andb is said to be the “filler” ofR. R : b is equivalent to the more usudidsValue”
notationd R.{b}. Second, the role composition constructor, that is a rolestactor,
denoted by o S, for two rolesR ands is interpreted as

(RoS)Y ={(ac) e 47 x47|Ab.(a,b) e R A (b,c) € ST} (2)

The combination of the two constructors produces an exjpressich a®oS : b, which
is equivalent tad R.(3 S.{b}).

3.2 Formal Concept Analysis

Formal Concept Analysis (FCA) is the process of abstraatimgceptual descriptions
from a set of objects described by attributes [11]. Form&yA studies dormal con-
text K that associates a set of objegido a set of attributedVl through an incidence
relationZg in G x M. An example of formal context is depicted in Table 1, whgris

a set of patients anM a set of patient attributes. #rmal conceptissued from a for-
mal contextK = (G, M, Ig), is defined as a pai’y B) whereA is a subset of objects,
the extentof the concept, an@ is a subset of attributes, thatentof the concept. The
definition of the conceptA, B) is based on a Galois connection defined by the dual
application that transforms a set of objestand a set of attributel as follows

A ={me M|Vae A:(am)e Iy},

B :={geG|Vbe B: (g,b) € Ig}.

A formal concept A, B) verifiesA = B’ and duallyB = A’. Formal concepts can be
hierarchically ordered by inclusion of their extents. Toider induces a lattice, called
theconcept latticeof K. Such a lattice is always complete meaning that for any gair o
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concepts there exists a unique smallest superconcept amdweuargest subconcept.
An example of concept lattice is given in Figure 5.

Thanks to its mathematical properties, a concept latticebeaused as an interme-
diate support structure to mine multiple data dependepsigsh as Association Rules
AR, that hold in a context [12]AR are probabilistic data dependencies having the
form B; = B,. B; (theantecedentand B, (the consequentare sets of attributes and
B; = B, expresses that the presence of attributd; iimplies the presence of attributes
in B, with a specifiedsupportandconfidence

supportB; = B) = —l(Bl VB,
Gl
confidencéB; = By) = %
1

AR are usually computed from Frequent Itemsets, i.e. setgrilfuetes with a support
greater than aninimum supportSince the number afAR extracted from a formal
context can be huge , reduced setsAR need to be identified [13] [14]. In this work,
we used the set dkeduced Minimal Non-Redundant RuURSAN'R [15], which is the

transitive reduction oMinimal Non-Redundant RuleB(IN'‘R defined by Kryszkiewicz
in [14]. RMNR represents a reduced set of rules with a minimal antecedehtia
maximum consequent, from which all other rules can be déri¥ée calculation of
RMNR used in this work takes benefit of the intermediate strucpuoxided by a

formal lattice. This calculation is based on the Next Cleséifgorithm of B. Ganter

[13].

4 Role Assertion Analysis

Role Assertion Analysis (RAA) is a semi-automatic procéssakes as input a DL
ontologyO = (7", A), a DL concept descriptiofy, and a parameter named maximum
depthdmax and returns as output a refined version of the original ogio® with new
concept descriptions, new roles, and new role assertions.

Figure 1 depicts the characteristics of this approach tbaldche divided in four
main steps:

(a) extraction of the set of assertion graphs associatddarspecified concefdp,
(b) transformation of assertion graphs into a formal cantex

(c) analysis of the formal context with FCA, and

(d) interpretation of FCA results in terms of new DL concegotsl roles.

These four steps could be compared to extraction, transtiwm mining, and in-
terpretation steps, classically described in the KDD pecé&his is detailed in next
subsections.

4.1 From ontology to assertion graphs

Firstly, the analyst has to define a conceptvithin the ontologyO from which the set
of instancesAy will be considered for RAA. In practice, the description@fis not
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(d) Interpretation

Refinement Selection and validation
of the ontology of new knowledge units
> .
Extraction of
(@]
O TBox regularities
o c d (c) Mining
6 ABoOX 0 max Construction
/ / of a lattice
d L v Generation of
Selection Exploration of obiject, attribute
of assertions assertion graphs and ;'elations
(a) Extraction (b) Transformation

Fig. 1. Overview of the Role Assertion Analysis (RAA) approach. Action taggét tvdenotes
interactive steps.
constrained. It can be a concept that is explicitly define@ ims well as an undefined
concept, described with DL constructors, and concepts ffotAl is defined as the set
of individualsa that are instances @, thus satisfying#Aly = {a | Co(a)}.This manual
step is cucial since it enables the analyst to focus on a sobgalividuals relevant to
characterise. Section 5 give an example of a conCgpt

We define theassertion graph @ = (V, E) as a rooted oriented cyclic graph with
a asroot vertex concept assertions agrtices \ and role assertion asdges E The
assertion graph @ = (V, E) of each individuak from Ay, is then explored in order to
compute every possible path that relates, through roletass® individuala to other
individuals inO. This graph is explored by a depth-first search algorithnstamed by
one parameter, the maximum dephx given as an input by the analyst (edgax = 3),
and two restrictions: (1) it is not allowed to pass more thacedoy a same vertex, (2) it
is not allowed to traverse an edge (that correspongjand then the edge associated to
the inverse relation (that correspond®&t9. Parametet,,xlimits the depth progression
of the algorithm to a maximum number of edges within a singlthpConstraint (1)
guarantees the absence of cycle in generated paths, doh&2)as a practical choice
that reduces the size of the generated formal context. Ibeatemonstrated that under
this conditions, the assertion graph is finally totally (et minimally) covered by
paths at a maximalax depth. An example of assertion graph and all its derivedspath
is displayed in Figure 2.

.

std_inh_ttt pa01

/ 3
&

std_i nn(ll . ainh sm,ythHQ

/ \ /’sl‘\u nh_ttt / \‘ ”g\%atza
paoy, paoy, pa<0; S1g_ko pg‘) * \

5ng_kg

tet_failure P te faiture |
‘ih_pat huay
\ / p Y s“, hm at2_4 w2 @z
ih_pat hway
nat2 0 == Qa2 le / -pathvay

assertion graph gpa01 nh_pa ”“'*‘V‘ ) ) Iv) ’7 .
at2 4 nat 2

Fig. 2. Schematization of the assertion graph of pa01 and of each gener#tediied.x = 3
At the end of graph exploration, each individaels associated with a set of paths
and sub-paths that can be described as DL concepts. For kxapath that follows
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successively edges corresponding to ralesads and ends on the vertex corresponding
to an individualb that instantiate the conce@y is a representation, in the graph, of the
concepRoS : b. Thisis interpreted using constructors (1) and (2) defineslibsection
3.1as

(RoS:b) ={aeA?|(ab’)e®RoS)). (3)

4.2 From assertion graphs to formal context

The task consists here in transforming the set of assertiaphgG, = (V,E) into a
formal contextK = (G, M, Ig) that can be subsequently analysed with FCA methods.
Obviously enough, the set of objggcorresponds to the set of individuatt. Mapping

the assertion grapB, to a set of attributed1 according to the incidence relatid is
more complex. For such a given graph, each computed patlbepath (described as a
DL concept) is translated into strings that label attrisuteadd toM. For example the
expression (3) above is used to create at least two attsbuytan: in M identified by

the following strings

my := R.0_.S:b means thaais related td by an assertion df o S,
m¢ == R.0_S:C, means thaais related to an assertion 6f byR o S.

The attributarc is generated in the hope that more objects will displaytattemc than

my and will then contribute to produce more regularities in ¢cbatext. Sinced could
instantiate several concepts@fone path could generate several attributes of the form
of m¢. The same path is also used to fill the incidence relafigiof the contextk. If a
path froma leads to the creation of attributeg andmc, then the incidencea’ m, and
al'm are filled in I'g. The formal context presented in Table 1 results from thst fir
step.

4.3 From formal context to Reduced Minimal Non-Redundant Rués

The third step of the proposed approach consists in theatidraof regularities from
the formal context. Regularities are typically deterntinisr probabilistic dependences
between attributes. The first task for analysing such retjgls in the context is to
compute the concept lattice (see Figure 4 for an example)assical algorithm to
construct a lattice is the Next Closure Algorithm [13]. Talgorithm has been recently
refined and compared to other existing ones by Kuznetsov &netikov in [16]. Once
the concept lattice is constructed, its mathematical siracan be analysed byfférent
methods.This study is based ®IMNR (see subsection 3.2), beca®MNR yields
the smallest set of rules from which all valid rules can beveel RMNR is smaller
than closed association rules and minimal non-redundaotcagion rules. Of course,
depending on the interest of the analyst, other regulayisiech as rare association rules,
could be extracted from the context [17].
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4.4 From Reduced Minimal Non-Redundant Rules to new DL concep and
roles

The last step involves again the analyst since she has tot seleubset of relevant
attributes fromRMAN'R for defining new DL concepts and roles. This last step prasent
similarities with emerging work on Relational Concept Arsaé (RCA) [18].

New DL concepts Selected attributes within a rule are translated back apdeszed
as a DL concept. Formally, if,,my € M are selected within a rule, they are expressed
in DL as:

m, with the labelR_o_S:b is expressed a&o S : b,
my with the label T_o_U:d is expressed @o U : d,

and associated as follow @yey == RoS : b 1 ToU : d. This task is not limited
to association of two attributes or to compositions of twiesoAttributes of the form
of mc are similarly translated back in DL but without using thelsfilconstructor. For
example, attribut®_o_S:(, is translated back i R o S.Cp.

Once a new concefl,, is defined, the last step is its insertion into the original
ontology. To achieve this task, the most specific con€gpl from 7 that satisfies
Fo Crew T Csups IS cOomputed. Then, depending on analyst validat@g, becomes a
new concept it such ag,e, C Csups, OF alternativelyC,., description completes;,,s
description:Csyps = Cpew (that could also be note€yns = Csups M Crew) - The latter
occurs when the analyst observes thaf, definition is more precise in describing what
is supposed to be representeddyy,s. Section 5 illustrates this interpretation step. We
propose an algorithm that formalises this task in [19].

New roles angor role assertions Primarily selected attributes also lead to creating
new roles anfbr new role assertions. Selected attributes are expressbd aoncept
descriptions as for the creation of new DL concepts, butarassociated and are stored
independently. The analyst is then proposed to create reaRQ,, between each pair
of “fillers”(see subsection 3.1) of new DL concepts, dagandd. It is interesting to
notice that “fillers” correspond to last vertices of pathplexed in the assertion graph,
and to individuals that are linked to individuals frafty. A creation of a new role is
proposed if no role exists in the ontology that can be asd¢otéink “fillers” directly.

In this case, the new rolg,, is directly instanciated with corresponding “fillers”, e.g
Rnew(b, d). In the alternative case where role already exists, thiysinghooses either to
instanciate an existing role if one is relevant or to creattinstanciate a new one. [19]
gives an algorithm that details operations of this task.

5 Role Assertion Analysis in pharmacogenomics

RAA has been applied to a real-world ontology in pharmacogeos calledpanarz ontoLocy
(introduced in section 2) with the objective of discoverimgv knowledge units con-
cerning the pharmacogenomics of the g&l#l2 A view of some concepts, concept
and role assertions a@fanat2 ontoLocy iS given in Figure 3.
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Fig. 3. A view of 1paNAT2 ONTOLOGY Fig. 4. A view of the refinement

The analyst initially selects the group of all patients utleld in the clinical study
IDANAT2. This subgroup of instances of the concefitent is defined inCy as

Co = patient M Hpopulates.{idanaa,paHEl,

Cp is instanciated by twelve individuals that correspond$i&ttvelve patients involved
in the study. Assuming a maximum depthax = 3, Figure 2 depicts the assertion
graph relative to the assertiag(pall). The figure distinguishes eightfidirent paths
explored in the graph that reflect all relations tipa01 has with other individuals in
DANAT2 ONTOLOGY. The resulting contexipanate (as explained in Section 4.2) is dis-
played in Table 1. The set of objedscontains all patients of the clinical trial, and the
setM contains twenty-two attributes produced from paths congail assertion graphs.
For example, the path located in Figure 2 Ill) is translated the following attributes

My = hasClinicalIltem:tuberculosis

Mc ‘= hasClinicalltem:DiseaseDiagnostic.

The concept lattice constructed for the cont#&xanat2 iS presented in Figure 5.
Each node stands for a concept harboudnged attribute¢displayed on the top of the
node), which are attributes that distinguish the concephfupper ones, andherited
attributes which are inherited from upper concepts. For example, tsedoncept on
the left is interpreted as the subgroup of patigra82, pa03, andpa01 sharing the local
owned attributetasclinicalltem: ttt_failure) that does not appear in any ascendant con-
cept, and sharing inherited attributes from upper con¢eptsh asasclinicalTtem:NAT2 4.

RMNR are computed with eninimum supportf 0.25 and aninimum confidence
of 0.8. Consequently, the concept lattice leads to idestifydistinctR MAN'R. Accord-
ing to the analyst, three of these rules describe relatipasthich are already known,
already in the ontology, and therefore out of the scope otiddy. The three other rules
were treated according to the process described in subséctl. Table 2 describes how
they are, first, translated back in three DL conceRt$:, Crewz, Crews,» and second, ar-
ticulated with concepts of the original ontology. From thmlgst point of view,Cpeu:
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Table 1. Formal context panat2 COnstructed on the basis of the DL ontologynat2 oNTOLOGY

way
Ioc%tedOno,involvedln:

way
tp_pathway

hasDrugo_involvedin:
hasClinicalltemo, Iocaﬁ\dOuo,involvedIn:
h_pat!

Pathway
inh_pathway
isTreatedWitho_hasDose:DrugDose
in
hasClinicalltemo.|

isTreatedWitho_hasDose:5mdkg
hasClinicalltemo_locatedOn:CYP1A2

hasClinicalltermo. Io%atedOno,involvedIn:
Pat

isTreatedWitho_hasDrugo_involvedin:
hasClinicalltem:DiseaseDiagnostic

hasClinicalltem:ttifailure
hasClinicalltemo_locatedOn:Gene

isTreatedWith:DrugTreatment
hasClinicallterno_locatedOn:NAT2

isTreatedWith:stdnh_ttt
hasClinicalltem:Genotypeltem

hasClinicalltem:NAT24
hasClinicalltem:NAT212

hasClinicalltem:hepatotoxicity
hasClinicalltem:NAT25

isTreatedWitho_hasDrug:Drug

isTreatedWitho_hasDrug:inh
hasClinicalltem:CYP1A2

isTreatedWitho_

pal0l
pa02
pa03
pa04
pa05
pa06
pa07|
pa08
pa09
pal0
pall
pal?

X
X

XIX[X[X| X[ X[ X|X[X[X|X[|X
XIX[X|X|X[X[X]|X|X[X|X]|X
X

XXX X]|X[X[X|X[|X[|X|X]|X
X

X

X X[ X[ X|X[|X
XX X[ X|X[X

X|IX[X[X|X

X
XX X[ X X[ X[ X|X[X[|X|X[|X

XX X[ X X[ X[ X|X[X[|X|X|X
XX X[ X X[ X[ X| X[ X[ X|X|X
XX X[ X X[ X[ X|X[X[|X|X|X
XX X[ X X[ X[ X|X[X[|X|X|X
XXX [ XXX X|X]|X[|X|X]|X
XXX [X]|X[X[X|X[|X[|X|X]|X
XX X[ X X[ X[ X|X[X[|X|X|X
XX X[ X X[ X[ X|X[X[|X]|X]|X
XX X[ X X[ X[ X|X[X[|X|X[|X
XXX [X]|X[X[X|X|X[|X|X]|X

isTreatedWith_o_hasDose:5mg_kg
isTreatedWith_o_hasDrug:inh
isTreatedWith:std_ttt

hasClinicalltern_o_locatedOn_o_involvedIn:tp_pat i
hasClinicallterm_o_locatedOn:CYP1A2 | [hasClinicalltern:NAT2 12
hasClinicallterm:CYP1AZ2_2 K

Fig. 5. Concept lattice for the contespanat2 With reduced labelling. The figure displays only
tree of fourteen attributes of the top node.

enables to characterise patients treated with iinlh) vith a daily dose of 5mg per kg
of body weight bmgkg). Cyew2 andCye,3 describe two relevant subgroups within the
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panel.Cueyz Stands forslow acetylatorghat metabolize inh slowly thus accumulating
toxic metabolites in their livet{epatotoxicity. Inversely 3 Stands forapid acetyla-
torsthat metabolize the drug so quickly that it has fieet ¢tt_failure). Each subgroup
is associated with a fierent version oNAT2gene NAT25 andNAT24).

Table 3 describes pairs of “fillers” extracted from rules amtidated or not (de-
noted with@) to assert roles in the ontology. For example, the rdlR; enables to
identify three pairs of “fillers”. No role assertion correspls to these pairs, but the
existing roleinteractswith can be asserted to link pair members. The analyst proposes
to assert this role with each pair. Resulting role assestimiween treatment, genotype
and phenotype are typical relevant knowledge units in phaagenomics.

Resulting new concepts and new roles assertion (those ajedeiromAR3) are

schematized in Figure 4.
Table 2. FromRMANR to new concept in the TBoX

Rule DL concept description Refinement/of

AR — Crewt = isTreatedWith{std.inh_ttt} — Cpew1 C Csubs
n3 isTreatedWith 4 hasDrugdfinh})
N3 isTreatedWithdl hasDosd5mg kg})
AR — Cpewz = disTreatedWith{std.inh_ttt} — Caubs = Csubs M Crewz
3 hasClinicalltem {hepatotoxicity)
M3 hasClinicalltem {NAT2_5})
ARz — Cpews = M hasClinicalltem {ttt_failure}) — Cpews C Csubs
3 hasClinicalltem{NAT2_4})

Table 3. FromRMNR to new role assertions in the ABoR

Rule Pair of “fillers” Refinement ofA
ARy — (stdiinh_ttt,inh), - 0,
(std.inh_ttt,5mgkg), @,
(inh,5mgkg) @
AR, — (std.inh_ttt,hepatotoxicity)— @,
(stdinh_ttt, NAT2.5) interactsWith(stdnh_ttt, NAT2_5),

(hepatotoxicity,NAT25) interactsWith(hepatotoxicity, NAT8)
ARz — (std.inh_ttt,ttt_failure) — interactsWith(stdnh_ttt,ttt failure),

(stdinh_ttt, NAT2_4) interactsWith(stdnh_ttt, NAT2_4),

(ttt_failure,NAT2.4) interactsWith(tttfailure,NAT2.4)

6 Conclusion

The novelty of the RAA process described in this paper retiethe exploitation of
role assertions as a basis for mining ontology instancesha\Ve illustrated through a
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real-world example how this approach can succeed in distmyseveral knowledge
units that were implicitly embedded in ontology instandesplementation of RAA
is underway in the frame of a plug-in for the ontology editootBce 4. As for any
KDD process RAA can be run in an iterative manner. First erpentations show that
relevant refinements of ontology occur gradually duringcessive iterations of RAA
process.
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