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ABSTRACT
Natural Language interfaces have been proposed as a solu-
tion to make application functionality more accessible to end
users. Practical implementation of such systems has been
hampered by both semantic and knowledge-engineering chal-
lenges. This paper introduces Social Computation, a theo-
retical model targeting both challenges. The model employs
natural language in a planning framework to enable commu-
nities of end-users to collaborate, explicitly and implicitly,
in the development of new functionality. The model intrinsi-
cally supports the acquisition of user goals and natural lan-
guage semantics in the context of the application domain.
ScratchTalk is a prototype of the natural language planning
component of the model applied to the Scratch programming
environment. This serves to ground the framework and pro-
vide insights into the space of applications likely to be ad-
dressable by the Social Computation model.
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INTRODUCTION
Today, customization of application behavior is accomplished
through combinations of scripting languages, plugins, and
macros. Unfortunately, the learning curve necessary to use
any of these approaches is too steep for most users. This
problem stems, in part, from the cognitive barriers that all of
these models require of users: understanding precise seman-
tics, modeling hidden state, and navigating a large design
space [4].

User interface research on end user programming aims to
reduce the cognitive burden on end users while improving
their access to the capabilities of the underlying system. As
the tasks carried out by the user grow in complexity, the
user must discover and memorize complex sequences of ac-
tions and understand how to avoid negative effects. End-user
scripting attempts to enable the user to abstract and automate
those sequences to save both labor and reduce the cognitive
burden . It is this process of abstraction, the means by which
a user codifies combinations of primitives, that is the primary
interest of this paper.

New functionality can be created by three classes of people:
a developer, another member of the user community, or the
end user. The next section describes the properties of these
three classes and where features come from, arguing that to-
day’s scripting models are fundamentally too expensive and
insufficient to cover a large space of functionality. Increased
coverage of potential functionality can increase the desir-
ability or utility of a given application.

Social Computation aims to change the cost-economics of
scripting by dramatically altering the user interaction model
and the representation of procedural behavior. This model
borrows concepts from goal-oriented programming, plan-
ning, interpreted languages, collective intelligence, and so-
cial networks.

SOCIAL COMPUTATION
What users can’t do
Program design requires that a programmer maintain a men-
tal dictionary of possible steps and determine how to se-
quence those steps so as to bring about desired side effects
while avoiding undesirable ones. Programmers have to ac-
commodate environmental variability, model hidden state that
is not easily inspected, and express each step with perfect
precision; all of which increase cognitive burden. When
completed, these programs are brittle and correspondingly
difficult to modify.

These skills are not easily learned. Competence requires
significant training and experience, limiting the populations
that can contribute to the development of new functionality.
Attempts to ameliorate this situation in commercially avail-
able languages have had little success [8].

Solutions to this conundrum typically trade expressive power
for simplicity so that users are better able to model the im-
plications of a statement. For example, visual programming
using flowcharts make application dataflow explicit, yet ex-
clude message passing and other forms of interdependence.
These models usually fall short of addressing the space of
user goals, leading to frustration and low adoption rates.

This outlook is not promising. The very notion of program-
ming appears anathema to most end-users. However, hu-
mans can express their desires to experts and through a pro-
cess of iteration and clarification, experts are generally able
to satisfy user goals. The following section proposes that as-
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pects of this interaction can be captured in a computational
framework, facilitating a larger range of end-user goals.

What users can do
The research community should be asking what users are
naturally good at and looking for opportunities to leverage
those skills. Following is a list of some natural user skills:

• Asking. Word of mouth has always played a significant
role in problem solving. The Internet today extends that
natural process via blogs, mailing lists and other discus-
sion forums. For the non-expert, this is often the only
source of answers.

• Searching. Most users of the internet today are accus-
tomed to searching for answers to their problem via key-
words or browsing. This can lead to the resources above,
but can also be used with a program’s help system (which
are rarely helpful) or as an index to program functions.

• Inspecting. In an environment where the behaviors or side
effects are transparent, users can be quite good at recog-
nizing errors. This is true in a domain such as animation
domain, but is less true in the spreadsheet domain where
hidden state increases dramatically with increasing com-
plexity [9].

• Critiquing. A review of online discussion lists for plugins,
extensions and scripts indicate that there are many more
users than developers and that users are extremely prolific
in expressing their discontent with specific failures or spe-
cific missing features.

• Tweaking. A smaller set of users (although still larger
than those who program) can take example scripts and
perform minor changes when the relationships of the script
to the domain model is reasonably easy to comprehend.
(i.e. Mail filter rules).

Users are good are pattern matching, but bad at pattern speci-
fication: users can’t always describe exactly what they want,
but they know it when they see it. Users are bad at design
but very good at complaining. How can we exploit these
observations?

The Long-Tail of Software Features
The cost of developing a software feature is extremely high;
thus developers are forced to pick the features that will have
the greatest impact on sales and satisfying existing users. If
we chose a standard indexing method, such as menus, for
making features available, then the index is likely to be ex-
tremely underpopulated with respect to all reasonable user
goals.

Anderson [1] coined the term “long tail” to describe a re-
lated commercial phenomenon wherein a change in cost eco-
nomics made selling small-volume products highly profitable.
The motivating observation was that Amazon.com had more
total revenue from low-volume books than from high-volume
books. This is because the cost of selling low and high vol-
ume books is identical for Amazon, whereas for a brick and

Figure 1. The long tail of software

mortar store a linear foot of shelf-space has a significant vari-
able cost that has to be amortized over sales, requiring phys-
ical bookstores to only carry books that have high volume.

The cost economics of application platforms today is akin to
the brick and mortar bookstores of yesterday. As with Ama-
zon, finding a way to serve the long tail of feature demand
can dramatically improve the reach of software applications
as well as the usefulness of those platforms to end users.

The obvious proposition is to find ways to reduce the costs of
feature development. Open Source has proven to be a way to
extend the reach of an application down the long tail of soft-
ware features, but Open Source is limited by a different kind
of economics. Even in Open Source, the cost of a feature
remains high in terms of skilled labor, but using volunteer
time instead of paid time. However volunteer developers are
likely to release and maintain code when there is a suffi-
cient incentive. Social incentives can be quite powerful, but
tend to require a certain critical mass of peers or end users.
Smaller open source projects are likely to have lower qual-
ity, limiting the population of users that can take advantage
of them. So Open Source serves a modestly larger popu-
lation than commercial software, mostly programmers and
power-users, and is unable to effectively support or leverage
the vast majority of users.

If the Open Source model doesn’t significantly change the
economics to capture the long tail of feature needs, what
can?

Empowering End Users
The key idea behind the Social Computation framework is
to find ways to enable the untapped end user population to
contribute new features suited to their specific goals. This
should be accomplished in a robust and sustainable way,
while surmounting the problems of precision, hidden state,
and design.

In this discussion features are considered to be pieces of
code, or a description of a plan that can be interpreted, that
is directly associated with a user’s goal. Since user goals are
often under specified, a plan or code fragment needs to cover
a range of cases without users having to intervene directly.

We can characterize the user population with a similar curve
as that applied to the software feature space. There are very



Figure 2. Distribution of user skills

few people who can write and maintain robust software. There
are more people who can modify or add incrementally to ex-
isting code and an even larger group that can add various
kinds of content like skins, templates, graphics, etc. How-
ever most of the population is incapable of directly provid-
ing value to other users. However, perhaps it is possible to
do so indirectly.

A truly transformational impact on the cost-economics of
new features becomes possible if can extract value from in-
dividual contributions in a way that enhances the next per-
son’s feature development. To make progress towards this
end, I propose a key set of assumptions:

• Represent scripts as hierarchical plans consisting of goals
and subgoals.

• Goals are specified by user-accessible natural language
phrases that enable the system to map to subgoals.

• Plans execute in a “soft fail” environment; users are ac-
customed to failures but are able to repair failures in a
multitude of ways.

• The user interface reifies side effects that the user is likely
to care about.

• The user uses a restricted set of natural language or the
user interface to critique plan failure; more sophisticated
users can make suggestions and experts can directly ma-
nipulate the machinery used by less-sophisticated users.

• Plans are incrementally modified to fix the problem iden-
tified by the critique.

These assumptions eliminates two of the three barriers to
end-user programming described earlier. Goals are not pre-
cisely described, but the related plan should provide increas-
ing robustness to different environmental variation as well as
handle the bookkeeping of hidden state that isn’t expressed
in the UI. To address the design problem we need to think
creatively about the design problem itself.

Design requires an exploration of the space of possible data
transformations, ordering and condition tests. This may hap-
pen in the mind of a developer, via a formal search algo-
rithm, or via an exploratory implementation. The key as-
sumption in Social Computing is that there is a community
of users with similar goals.

Figure 3. A Model for Social Computation

As shown in the graphic, there are two cycles taking place
in any given user’s application. The user is interacting with
their system which uses a knowledge base to interpret a user
speech act. The user observes the effect and makes any nec-
essary corrections. Simultaneously, each statement made by
the user that is correctly interpreted, is shared with other
users who may be making the same statement.

With such a community there are a large set of techniques
that can be used to sidestep many of the AI-hard problems
that come to mind such as domain representation, planning,
natural language understanding, and design space exploration.
A sample of such techniques include:

1. Collaborative filtering. User critique provides immedi-
ate feedback on the reliability of a given goal interpreta-
tion. Even the most naive of users can say, “that didn’t
work” and then select an alternative version. Human to
human interaction (such as an expert helping a neophyte)
regarding a specific goal can provide direct, explicit feed-
back on plan success or failure.

2. Sampling. A new plan interpretation of a goal can be
tried out on a small subset of users to investigate whether
it improves reliability or acceptance rates in the same vein
as the compiler techniques described in [3].

3. Supervised structure learning. The spotty reliability of
a plan is an opportunity to learn about missing precondi-
tions for a plan step. When the state variable is unrep-
resented by the system (i.e. no condition is found that is
correlated to the plans reliability), users can be sampled
to provide inputs as to why something works in one case
and not another, hypothesizing a variable over which cor-
relations can be observed.

4. Collective mapping. Users can specify a goal as a de-
sired action or state and observe the resulting behavior.
The user may change the goal, choose a different plan to
fix a failed goal, or make an explicit correction to an exist-
ing plan. Each of these actions provides an implicit data
point about whether a plan meets a goal, allowing users



to choose the preferred method even when there is not a
clear model of state.

5. Preference discovery. Using the same data as in col-
lective mapping above, the system can learn the order in
which to present alternative interpretations to users.

6. Preference clustering. The behavior intended by a given
natural language utterance may vary from user to user.
When a user falls into a cluster of users with similar pat-
terns of goal to plan selection or use of natural language
terms, that user can share preference orderings with their
affinity group rather than all users.

One of the largest advantages of this framework is the abil-
ity to view meaning as a mapping function and not a rep-
resentational challenge. Most of the problems in traditional
AI programs stem from the desire to explicitly represent the
meaning of a goal or a state. Finding a plan becomes a search
through a space defined by this formal representation, with
all the convenient theoretical properties of correctness and
complexity we are used to. Instead, interpretation is a pro-
cess of finding a “near match” which sufficiently satisfies the
intent of the user, allowing them to make forward progress
towards a goal.

This model is likely to be grossly insufficient for large scale
systems requiring complex software architecture, new user
interface techniques, and new underling representations. How-
ever, these are the very elements that are common to many
underlying features that developers should be putting their
time and attention.

SCRATCHTALK
The ScratchTalk prototype emerged from an exploratory de-
sign and implementation intended to uncover the major de-
sign tradeoffs, representational issues, and user interface re-
quirements involved in implementing the Social Computa-
tion model. At present, the system does not support a com-
munity model. The intent of this work was to investigate
constraints on the natural language dialog and to identify
specific mechanisms by which one user can create domain
knowledge, plans, or language mappings that would be use-
ful to other users.

ScratchTalk is an interface to the Scratch programming en-
vironment [6]. Scratch which was designed to be easy for
children to learn. This simplicity emerges from its simple
world state, small set of primitives, and a highly transparent
graphical user interface. Scratch has many desirable proper-
ties:

• Fail-soft. Mistakes are not catastrophic

• Interactive. Mistakes are easy to fix.

• Visual. It easy to visualize state and behavior.

• Transparent. Behavior and state are not hidden.

• Simple. It is designed for non-programmer children.

Figure 4. The Scratch User Interface

Scratch is a Logo-like world and user interface written in
Squeak, a modern implementation of the Smalltalk language.
The Scratch UI provides a visual, lego-block style view of
Squeak language constructs which are used to control a set
sprites that interact on a 2D canvas. The language consists
of primitives for orienting, moving, and transforming sprites
as well as detecting contact and other events. The language
also provides a small set of conditional and iterative con-
structs to combine these primitives. There is no support for
function calls or a call stack. The runtime model consists of
a set of concurrently executing scripts, with asynchronous
messaging and synchronized shared variables among them.
Each script is initiated independently in response to a mes-
sage, key command, mouse event, or a system-wide initia-
tion event (greenflag).

EXAMPLE SCENARIO PART I
To simplify the potential space of dialog and the represen-
tation of both time and causality, I focus specifically on the
using Scratch to create story-like animations.

The example animation used to drive the construction of the
prototype is a simple “dog chases cat” scenario. The user
expresses the steps of an animation in natural language, the
natural language is converted into an intermediate represen-
tation, and the representation is in turn converted to a Scratch
program that, when executed in the Scratch UI, the user can
critique or extend.

A Simple Scenario
A ScratchTalk user might start an animation description with
the first visible action:

"A cat wanders randomly
around the screen."

In response, ScratchTalk instantiates a sprite called ’cat’ and
creates a ’wandering’ event with an associated ’wander’ ac-
tion. A script that executes the wander action is synthesized
and a program sent to the UI for execution. The user sees a
cat making random movements in random directions on the



screen.

"When the cat comes near the dog,
the dog chases the cat."

This next statement results in the system inferring that there
is a new actor called ’dog’ which waits for a ’near’ event to
occur (distance between dog and cat sprites is less than some
value) and at that time starts a chase event. The animation
now shows the cat wandering around the screen, if the cat
comes near the dog, the dog will keep moving towards the
cat while the cat wanders around.

The user finishes the initial scene with:

"If the dog catches the cat,
the cat dies!"

This time, when the dog touches the cat during the anima-
tion, the cat stops wandering and performs a ’die’ script. The
default script in the knowledge base is to mimic the comic
strip character Bill the Cat: stop moving and say “Ackthp-
pht”.

This simple example contains within it a surprising amount
of complexity with implications for both program and lan-
guage semantics.

Extending the Scenario
There are several problems with the initial program. When
the dog chases the cat, the cat has no reciprocal response,
as common sense would lead one to expect. The cat simply
stops when he dies and should probably change its look to
better capture the action.

The user can fix errors or add to the existing program as
follows:

"When the dog chases the cat,
the cat runs away."

This phrase triggers a template in the system for “when <X>
, <Y>” that searches for an event matching <X>. In this
case it first tries matching the phrase directly, assuming a
surface variation of it was used to create the event. Fail-
ing this the system can look for near matches by identifying
the verb class and looking for events that match the related
classes, such as pursue in this case.

The “near” event that initiates the “chase” will now also ini-
tiate a new event, “runs away”. This event is then linked
to the other two events in a manner to be described in the
following section.

Dialog and natural language processing in ScratchTalk ben-
efit from the highly contextual nature of the interactions.
The scope of the reference into the program representation
is highly likely to be local, thus there are a finite number of
possible matches <X>. Moreover, there is a reasonable be-
lief from the conversational contract that <X> is sufficient
to uniquely identify the event of interest.

A second kind of extension is modifying an existing action.
In the case where the user has provided a sprite costume (or
icon) that depicts the dead cat, the system will not automati-
cally switch to this graphic.

"When the cat dies, switch to the
’dead’ costume."

Rather than creating a new event, this speech act will mod-
ify an existing event. The die action currently stops the runs
away action and results in the cat saying “Ackthppht”. The
action for “switch” binds to the “cat” by default as no ex-
plicit subject is provided. While the exact mechanism is
complicated1, these two events (say and switch) can be com-
bined by concatenation of the two events. ScratchTalk’s rep-
resentation of actions allows this to be done for any two
events. The editing of actions is a central feature of the sys-
tem and described in-depth in the section on planning below.

IMPLEMENTATION

Figure 5. ScratchTalk Architecture

ScratchTalk is written in Common Lisp and communicates
with a Scratch instance over a network socket. All of the
logic described in this paper was implemented in the Lisp
program. The socket simply allows the lisp program to up-
load programs to Scratch as well as the commands: start,
stop and clear.

The core of ScratchTalk consists of natural language pipeline
that operates roughly as follows:

1. Parse speech act => parse tree + VerbNet annotation

2. Compound sentence rules (i.e. when X then Y) =>
primitive subtrees

3. Dialog modeling => filters system commands, validates
reference scope

4. Reference resolution (NPs, VPs, arguments) =>
SVOO style predicates

1Event merging is an optimization that occurs at program genera-
tion time so the full temporal structure of the graph is maintained
during dialog with the user.



5. Goal resolution => choose a plan to implement goal in
speech act from a library of plans

6. Modify program representation => insert, delete, reorder,
or modify objects, properties, events, or actions according
to chosen plan

7. Synthesize Scratch code and send to Scratch to be exe-
cuted

In short, the system extracts goals from user speech acts,
uses those to modify a high-level representation of the ani-
mation, then generates low level code to animate that repre-
sentation.

Parsing and Reference Resolution
To quickly acquire a reasonably broad coverage of natural
language input with which to perform these mappings, the
SwiRL [11] semantic tagging framework was chosen. The
system is simple to use and produces sufficiently robust re-
sults for the purposes of the prototype.

SwiRL uses Charniak’s parser [2] to generate a parse tree,
then annotates constituents with role labels such as actor,
object, path, auxiliary arguments, etc. For simplicity, we
do not adapt the system to develop new mappings for failed
parses using user input. Instead we limit input to simple
sentences on which SwiRL maps verbs in a meaningful way
by asking the user to rephrase.

The system first applies a pattern matcher over the parse tree
to handle a variety of compound statements indicating con-
ditionality and conjunctions or disjunctions such as and, or,
if, while, when, etc. A matching template drives the rest of
the resolution process and performs any coordinate between
the constituents, such as creating temporal, causal or condi-
tional links between events in the animation narrative. For
example:

(define-linear-template if-then
(or (if $cond |,| then $consequent)

(if $cond |,| $consequent)
(if $cond then $consequent))

((link initiates
(primary-event
(resolve-event $cond))

(primary-event
(resolve-event $consequent)))))

Once the system has successfully identified a primitive sen-
tence, it translates the argument phrases to objects in the
system or to action modifiers. It then looks up action that
matches the VerbNet type2 as well as the arguments. Soft
matching allows the system to degrade gracefully by drop-
ping unknown or unneeded modifiers, looking for related
VerbNet verbs that do have matching actions.

(defaction run ($agent $away)
(do-until ()

2SwiRL generates Propbank annotations which ScratchTalk con-
verts to VerbNet tags using semlink[5].

(progn
(do-repeat 10

((forward 2)
(wait 0.02)))))
(:constraints (type-of $agent actor)

(member $away (away))))

(defaction run ($agent $away $np)
(run-away $agent $np)
(:constraints (type-of $agent actor)

(type-of $np actor)
(member $away (away))))

For example, the second definition of run above requires that
the $np argument resolves to an actor object.

Representing Scratch Animations
ScratchTalk uses an intermediate representation to capture
the essential phenomenology users are expected to reference.
This representation is compiled into a concrete Scratch pro-
gram which can then be run within the Scratch UI. For ex-
ample the Scratch script below, taken from the cat and dog
example, is initiated by an asynchronous message, “wander”
and causes the associated sprite to perform a random-walk
towards the bottom right corner of the screen.

((when-receive "wander")
(set-var wandering 1)
(do-until (= (read-var wandering) 0)
((glide-seconds-to-xy 0.2

(+ (xpos) (random -25 35))
(+ (ypos) (random -30 25))))))

ScratchTalk’s intermediate representation is made up of four
components: actors, events, actions and a narrative graph.
While these are somewhat tuned to the Scratch world model,
they are intended to be generic constructs that can be applied
to other application domains.

Actors
An actor in ScratchTalk is a simple object representation of a
Scratch sprite. It associates a string name with a set of prop-
erties such as sprite size, initial location, costume dictionary
(alternative sprite graphics), sound dictionary, etc. Compiled
actions result in a set of scripts being associated with the ac-
tor object, which is then serialized and sent to the Scratch
UI.

Events
An event captures either a point or an interval in time and
is associated with an actor that is the subject of the event.
Events serve as anchors for temporal relations and typically
have an associated action that tells the compiler how to gen-
erate code capturing the actor behavior associated with that
event. Because Scratch is a dynamic environment, events
can be linked causally (A → B) or an event can be associ-
ated with a conditional action indicating the activation of an
event.

Actions



Actions are plan templates that act like generic functions
with multiple dispatch. The semantic head names an action
class, and the arguments determine which method of that ac-
tion is selected and associated with the event identified by
that phrase. An action description such as

(defaction chase ($agent $subject)
(do-forever

(progn
(point-towards $subject)
(do-repeat %segment-steps

(progn (forward %segment-step-size)
(wait %segment-step-time)))))

(defaults (%segment-steps 5)
(%segment-step-size 2)
(%segment-step-time 0.1)))

expands to the Scratch script

((do-forever
((point-towards "cat")
(do-repeat 5
((forward 2)
(wait 0.01))))))

which when linked with catch

(defaction catch ($agent $subject)
(wait-until (touching $patient))

in the context of the narrative graph (see figure 6) becomes

((do-until (touching "cat")
((point-towards "cat")
(do-repeat 5
((forward 2)
(wait 0.01))))))

As we will see later, there is a more powerful method for
parameterizing actions, action editing, which is integral to
constructing the system’s lexicon of word and phrase mean-
ings.

The Narrative Graph
A ScratchTalk animation is tied together by a graph of nar-
rative relations among events. This functions loosely as a
control flow graph for the animation. An event can initi-
ate another event (a touch of a wall initiates a bounce off
that wall) or it can terminate another event (when the dog
catches the cat, the dog stops chasing the cat). There is also
a concurrent relation which allows a set of actions to be ini-
tiated as a group. In this case the compiler will generate a
common message so that any initiating or terminating event
that is applied to one event is applied to all events labeled as
concurrent.

When the final program is synthesized, the events and ac-
tions contained in the graph are converted into a set scripts
each associated with a specific sprite. A set of optimizations
is first applied, such as combining ’chase’ and ’catch’ above.
Temporal and conditional constraints are extracted from the

Figure 6. A narrative graph of the cat and dog example

narrative and expressed as messages or semaphore variables
such that scripts start and stop in accordance with the con-
straints in that graph. The fully linked output of the chase
script above becomes:

((when-receive "chase")
(do-until (touching cat)
((point-towards cat)
(do-repeat 5
((forward 2)
(wait 0.01)))))

(broadcast "die"))

The narrative graph structure is quite general and, with some
extension, should work for any process that can be as an
event-driven, control-flow graph.

EXAMPLE SCENARIO PART II
This simple example glosses over some significant issues of
precision, such as where the cat and dog should start on the
screen, how big should they be, and how fast should they
execute these actions? Is “near” 100 pixels or 200 pixels?
These are exactly the kinds of things a programmer must
think about that the user shouldn’t have to, unless the default
assumptions violate their expectation.

The following sequences illustrate how the user and system
can override defaults, create new defaults and augment an
existing animation model3.

By default, Scratch places all sprites in the center of the
screen. In this case the dog is near the cat, the dog is touch-
ing the cat and thus the whole animation terminates imme-
diately. It is easy to fix this by changing the default start
location.

"The cat should start in the upper left
corner and the dog should start in the
lower right corner."

The conjunction template for “and” breaks this down into
two phrases, each consisting of a “should start” action verb.
These actions modify properties of the subject, rather than
inserting or editing an event. A primitive script computes
3While the representational apparatus exists for the following ex-
amples, the system does not yet provide the end-to-end mapping
from natural language to final code due to limitations in the seman-
tic labeling system (the analysis section contains a short discussion
of this problem).



the coordinates of a sprite of the size of cat and dog in the
locations described so they start in the appropriate location.
In the Social Computation model, placement primitives can
be provided by more expert users. Ordinary users can then
modify the application of those procedures to specific cir-
cumstances.

Another default behavior of the system is that the default
wander script has no directional bias. The cat just keeps
wandering randomly around the start location.

"The cat should wander towards
the bottom left corner"

This speech act requires the system to perform a very so-
phisticated change to a pre-existing script. The step parame-
ters of the loop that implements the random steps need to be
modified to properly add the bias. This can be performed
by having some general knowledge about scripts, param-
eters, coordinates, and motion. Most of the design work
in ScratchTalk was ensuring that the representations above
could support operations such as this.

Scripts often are missing default parameters; for example
how much should the step calculation be biased? This ex-
ample shows that the database of defaults is as important to
the interactivity of the system as are the representations and
behavioral descriptions. However, each person who creates
or modifies a specific defaults value can empower other users
in the network.

PLANNING IN SCRATCHTALK
Actions are essentially plans that can be tied to a goal. In
the example above, goals were captured as imperative com-
mands stated in natural language. The most interesting fea-
ture explored by ScratchTalk is the means by which actions
are extended to accommodate new problems and new situa-
tions.

Plans as Programs
I employ a model of planning introduced by HACKER [12].
HACKER was an automated planning framework for a sim-
ple block stacking domain. Plans to satisfy goals were pro-
cedures. These procedures were incrementally modified to
work around obstacles discovered in achieving a goal. In ef-
fect, programs are incrementally “hacked” together using a
general representation of domain knowledge, programming
techniques, bug types, and patch types. When a goal can-
not be achieved in a single primitive step, it is treated as a
bug. The bug is classified, which results in a patch attempt
being made. The patch attempt may use domain knowledge
or general programming knowledge, such as “if failed pre-
condition, first satisfy precondition”. Finally, a critic is gen-
erated that recognizes when a bug type has been created by
the program and patches it automatically without actually
running the program.

By incrementally training the system on goals and states of
increasing complexity, the system constructs a rich lexicon
of robust plans that solve many of the goals that one can

formulate in the blocks world. In this way, HACKER not
only becomes better at satisfying goals, but also better at
constructing new programs.

There are some crucial differences between the blocks world
and the Scratch world. ScratchTalk doesn’t have a clean state
model, and thus no means of formally classifying bugs in
terms of that state. The system can have, however, a formal
model of programming knowledge as well as different patch
types.

The goal is to use the HACKER system model, but to rely on
users to incrementally specify domain knowledge and bug
types4. Domain knowledge and recognition of mistakes and
problems are exactly what many humans can do that our ma-
chines can’t.

• Recognizing errors. The transparency property of the do-
main is important because it enables users to see errors
when they happen. Highly transparent systems tend to ex-
hibit temporal locality of cause and observed effect, sim-
plifying user critique.

• Critique and patching. Given a kind of critique, the sys-
tem can apply a patch and attempt to repeat the prior be-
havior. The properties of interactivity and fail-soft are
critical to being able to backup and retry in the presence
of failures.

• Explanations and repair. By expanding an action plan, the
system can generate explanations that can prime users to
provide repair suggestions using language the system can
understand.

Editing Events and Narrative Relations
As shown in the original example, users can update the pro-
gram model by clarifying what happens to or around a spe-
cific event. The system currently supports the following edit-
ing operations for events and narratives:

• Inserting and removing events. The simplest editing op-
eration is to do what the dialog does naturally, which is to
have a prior event for the same sprite initiate the next even
and the next even terminate the prior event. Concurrency
of actions for the same object is not assumed by default.
In fact such concurrency is typically implemented by edit-
ing actions.

• Temporal reordering. The user can change the order and
casual relationships among events by adding or deleting
temporal relations. This is currently not directly available
to the user, but the same machinery is used by the dialog
system when adding new events.

• Editing event action slots. An action can be overridden
by an edit to create a new, derived action. This happens
whenever the user augments an event as illustrated in the
examples.

4With better access to state than in ScratchTalk, it should be pos-
sible to create critics which effectively model the domain without
having to construct a complete model of the domain.



• Creating and revoking concurrency (see figure 6 for an
example of the concurrency relation).

Action Editing
Action editing can be quite sophisticated. To make a cer-
tain kind of side effect on a program’s behavior, we have to
map the user’s expression “chase faster” to a command that
edits action scripts. The simplest editing operation might
be “increment statement X in pattern Y ” to match a spe-
cific statement in a procedure. We can make a pattern more
complicated so that it can match more flexibly, similarly to
HACKER. For example; “Increment the step-distance of the
inner-most motion loop in this procedure.” This latter form
is what the system uses currently, although the number of
such patterns remains small.

The editing operations available and used in the current sys-
tem include:

• concatenating statement sequences

• insert a statement to the front of a loop body

• insert a statement at the end of a loop body

• remove a statement from a loop body

• add a loop exit condition

• override a default

• modify a parameter

• force an alternate action selection

Most of these operations are already in use by the event
linker to merge event bodies and tie together all the actions
using the variables and message passing. The problem of
using natural language to evoke these editing operations is
one of mapping properties or changes (faster, spin around,
etc) to code sections that can serve as hooks for the editing
primitives. An expert user can add these mappings automat-
ically, or the machine can learn such mappings by general-
izing from small numbers of examples and recording excep-
tions in the case of over generalization.

ANALYSIS AND FUTURE WORK
The central innovation in ScratchTalk is enabling users to
use natural language to incrementally extend plans through
critique and repair of existing plans. These individual con-
tributions can be aggregated from a number of users to ex-
pand on the knowledge base available to a given user. These
contributions come in the form of new actions, default val-
ues, action editing scripts, and new language mappings to
these components. The work described here is insufficient
to prove the full Social Computation model, but takes some
important steps in that direction. During the development of
the application several problems were identified that inform
future work.

Domain Issues
The properties of the Scratch animation domain all contributed
to the development of the program, however there are sev-
eral properties lacking that I would want to see in the next
experimental domain:

• Access to more internal state. Scratch provides an impov-
erished set of sensing primitives. A sprite cannot know
the location of another sprite, only it’s direction and dis-
tance5.

• Synthesize and run. Generating code, then visualizing the
program as a whole makes the interaction quite stilted. Far
better to directly execute from the intermediate represen-
tation and use continuous planning techniques.

• Interpreter, not compiler. If always running interpreted,
the system can learn when a certain state will cause a plan
to fail and switch to another. ScratchTalk is forced to pre-
compile all alternative plans into conditional code state-
ments or parallel scripts, greatly increasing the complex-
ity for learning.

• Direct manipulation. The Scratch UI was hard to use be-
cause of an inability to get inside the UI to allow users to
perform direct manipulations that directly teach the sys-
tem. A user-friendly system would provide multi-modal
inputs, using direct manipulation where it makes sense
and using language when the UI metaphors become awk-
ward.

Plan Representations
One of the more challenging aspects of ScratchTalk is the ac-
tion representation. A great deal of the time on this project
was spent iterating through different action representations
and the current implementation is far from satisfactory. The
chief difficulty lies in handling plan variations under a spe-
cific goal, or different methods for performing the same plan
step. This is further complicated by action editing. Some
questions immediately arise. Do we edit a fully expanded
version of a top level action, or do we edit specific sub-
actions in the hierarchy? If we are editing the hierarchy,
what information do we have about sub-actions (sub-goals)
to determine the reference for an editing action?

This leads to an interesting design space. The following are
some key parameters of this space.

• Dispatch. Is action dispatch a static process (easy for ac-
tion expansion) or a dynamic dispatch (allowing for late
binding based on world state). Static dispatch pushes com-
plexity into conditional code, dynamic dispatch pushes
complexity into the action editing rules.

• Hierarchy. How do we maintain information about a spe-
cific action hierarchy? If we want to edit a parameter
or default for a sub-action, do we annotate the top level
action or create an instance of the sub-plan and annotate
that? How would that interact with dynamic dispatch?

5There are no function abstractions in Scratch, so the polar to
Cartesian coordinate conversion makes the code very difficult to
read.



• Expansion/Synthesis. Do we expand code as we construct
it and edit the primitives, or do we maintain the hierarchy
and synthesize as late as possible? I prefer the latter, but
again it adds action editing rule complexity.

• Annotations. How do we keep track of what a parame-
ters or default will be at final code synthesis time? Do
we perform code expansion on every edit to validate all
constraints, or do we wait until code synthesis time?

Learning
The chasing and running away example affords an inter-
esting observation about the potential for acquiring general
knowledge from users of this system. In general there are
a large class of verbs with subject and object arguments for
which a user would expect a reciprocal action. (For example:
chase & run, attack & defend, threaten & fear, etc).

Given several examples of chase being associated with run
away, the system can form the abductive hypothesis that any-
thing chased runs away and add the reciprocal event by de-
fault in the future. The response of the user to this kind of
assumption helps determine the reliability of a given default.

Complexity
Each layer of the action system requires default knowledge
of various kinds and an ability to resolve natural language
references to the appropriate subsystem, hierarchy layer, and
editing routine. It is possible that the complexity of this
architecture will severely limit the scaling of this system.
The promise of Social Computation is that the collective
contributions will compensate for the complexity by rely-
ing on human contributors to create, tune, and filter a rich
library of heuristics that work often enough to keep users
satisfied. This philosophical approach to developing com-
putational functionality is heavily inspired by the views of
Minsky [7] and Singh [10].

CONCLUSION
This paper introduces ScratchTalk, a prototype system en-
abling end-users to specify and modify programmatic behav-
ior via natural language. This prototype system illustrates a
representational apparatus amenable to the constraints of the
Social Computation scripting model.

The current prototype allows users to describe simple anima-
tions in the Scratch programming environment using natural
language. ScratchTalk introduces three key ideas: the con-
cept of end user programming through plan elaboration, the
central role of user critique and repair in that elaboration,
and the use of natural language to reference plans, critiques,
and repairs.

A version of the generated cat and dog example can be down-
loaded from

http://web.media.mit.edu/
˜eslick/example.sb

and run on the Scratch UI available from

http://scratch.mit.edu/

A Quicktime movie of this example can be viewed at

http://web.media.mit.edu/
˜eslick/scratchtalk-demo1.mov
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