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Abstract. In recent work, we addressed an important limitation in previous ex-
tensions of description logics to represent defeasible knowledge, namely the re-
striction in the semantics of defeasible concept inclusion to a single preference or-
der on objects of the domain. Syntactically, this limitation translates to a context-
agnostic notion of defeasible subsumption, which is quite restrictive when it
comes to modelling different nuances of defeasibility. Our point of departure in
our recent proposal allows for different orderings on the interpretation of roles.
This yields a notion of contextual defeasible subsumption, where the context is
informed by a role. In the present paper, we extend this work to also provide a
proof-theoretic counterpart and associated results. We define a (naive) tableau-
based algorithm for checking preferential consistency of contextual defeasible
knowledge bases, a central piece in the definition of other forms of contextual
defeasible reasoning over ontologies, notably contextual rational closure.
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1 Introduction

Description logics (DLs) [1] are central to many modern Al and database applications
since they provide the logical foundation of formal ontologies. Yet, as classical for-
malisms, DLs do not allow for the proper representation of and reasoning with defeasi-
ble information, as shown up in the following example from the access-control domain:
employees have access to classified information; interns (who are also employees) do
not; but graduate interns do. From a naive (classical) formalisation of this scenario, one
concludes that the class of interns is empty (just as that of graduate interns). But while
concept unsatisfiability has been investigated extensively in ontology debugging and
repair, our research problem here goes beyond that.

The past 25 years have witnessed many attempts to introduce defeasible-reasoning
capabilities in a DL setting, usually drawing on a well-established body of research
on non-monotonic reasoning (NMR). These comprise the so-called preferential ap-
proaches [13-15,23,24,22,26,27,29, 30, 38, 39], circumscription-based ones [6, 7, 40],
as well as others [2, 3,5, 25,31-33, 36,37, 42].

Preferential extensions of DLs turn out to be particularly promising. There a notion
of defeasible subsumption L is introduced, the intuition of a statement of the form CL D
being that “usually, C' is subsumed by D” or “the normal C's are Ds”. The semantics
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is in terms of an ordering on the set of objects allowing us to identify the most normal
elements in C' with the minimal C-instances w.r.t. the ordering.

The assumption of a single ordering on the domain of interpretation does not allow
for different, possibly incompatible, notions of defeasibility in subsumption resulting
from the fact that a given object may be more exceptional than another in some context
but less exceptional in another. Defeasibility therefore introduces a new facet of contex-
tual reasoning not present in deductive reasoning. In recent work [21] we addressed this
limitation by allowing different orderings on objects, using preference relations on role
interpretations [17]. Here we complete the picture by also providing a proof-theoretic
counterpart and associated results.

After setting up the notation and our access-control example in Section 2, we give
a summary of our context-based defeasible DL (Section 3). In Section 4, we define a
tableau-based algorithm for checking consistency of contextual defeasible knowledge
bases. The paper concludes with a discussion on future directions of investigation.

2 Notation and an example

We assume finite and pairwise disjoint sets C, R and | standing for, respectively, con-
cept, role and individual names. With A, B, ... we denote concept names, with r, s, . . .,
role names, and with a, b, .. ., individual names. In the access-control scenario above
we could have, for example, C = {Classified, Employee, Graduate, Intern, ResAssoc},
R = {hasAcc, hasJob, hasQua}, and | = {anne, bill, chris, doc123}, with the respec-
tive obvious intuitions. Complex concepts are denoted C, D, . ..

Figure 1 depicts an interpretation for our access-control example with domain AZ =
{z; | 0 < ¢ < 11}, and interpreting the elements of the vocabulary as follows:
Classified? = {z10}, Employee? = {0, x4, T5,29}, Graduate? = {z4, 25,26, Tg},
Intern? = {z0, 24}, ResAssoc” = {5, 6,27}, hasAcc? = {(24,210), (29, 210),
(l‘ﬁ, 1‘10), (.%‘6, l‘ll)}, hasJobI = {(.130, 1‘3), (l‘4, 1‘3), (1‘9, 1‘3), (1‘5, 1‘1), (IG, 1‘1)}, and
hasQua® = {(z4,23s), (z9,xs), (25, 22), (x6,22), (27, 22)}. Further, anne” = x5,
billt = xg, chris™ = xg, and doc123% = T10.

The knowledge base 5 = T U A, with 7 and A as below, is a first stab at formal-
ising our access-control example:

Intern C Employee,
Employee C JhasJob. T,

Graduate C hasQua. T, anne : ResAssoc,
T Employee C JhasAcc.Classified, A— chris : ResAssoc,
Intern C —3hasAcc.Classified, doc123 : Classified,
Intern M Graduate = JhasAcc.Classified, (chris,doc123) : hasAcc

ResAssoc = —Employee,
ResAssoc T Graduate

It is not hard to see that this knowledge base is satisfiable and to check that KB =
Intern C L. Incoherence of the knowledge base is but one of the (many) reasons to go
defeasible. Armed with a notion of defeasible subsumption of the form C' & D [15], of
which the intuition is “normally, C' is subsumed by D”, formalised by the adoption of
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Fig. 1. An ALC interpretation for C, R and | as above. For the sake of presentation, concept, role
and individual names have been abbreviated.

a preferential semantics a la Shoham [41], we can give a more refined formalisation
of our scenario example with B = 7 U D U A, where 7 and D are given below (D
standing for a defeasible TBox) and A is as above:

Employee & JhasAcc.Classified,

Intern C Employee, Intern & —3hasAcc.Classified,
T = < Employee C JhasJob.T, 3 D = { Intern M Graduate & JhasAcc.Classified,
Graduate C hasQua.T ResAssoc L —Employee,

ResAssoc L Graduate

Then, one could ask whether intern research associates are usually graduates, and
whether they should usually have access to classified information. It soon becomes
clear that modelling defeasible information is more challenging than modelling classi-
cal information, and that it becomes problematic when defeasible information relating
to different contexts are not modelled independently.

Suppose, for example, that Chris is a graduate research associate who is also an
employee, and Anne is a research associate who is neither a graduate nor an employee.
In any preferential model of the defeasible K13, both Chris and Anne are exceptional in
the class of research associates. This follows because Chris is an exceptional research
associate w.r.t. employment status, and Anne is an exceptional research associate w.r.t.
qualification. Also, in any preferential model of B Chris and Anne are either incom-
parable, or one of them is more normal than the other. Since context has not been taken
into account, there is no model in which Anne is more normal than Chris w.r.t. employ-
ment, but Chris is more normal than Anne w.r.t. qualification.

3 Contextual defeasible ALC

Contextual defeasible ALC (dALC) smoothly combines in a single logical framework
the following features: all classical ALC constructs; defeasible value and existential
restrictions [12, 17]; defeasible concept inclusions [15], and context [18, 21].
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Let C, R and | be as before. Complex d ALC concepts are denoted C, D, . . ., and are
built according to the rules:

Cu=T|L|C|(=C)[(CNC)|(CUC)|@ErC)| (¥.C) | (Er.C) | ¥r.C)

With Lgarsc we denote the language of all dALC concepts (including all ALC
concepts). Again, when writing down elements of L;4,¢, we shall omit parentheses
whenever they are not necessary for disambiguation. An example of dALC concept
is ResAssoc M (¥YhasAcc.—Classified) M (FhasAcc.Classified), denoting those research
associates whose normal access is only to non-classified info but who also turn out to
have some (exceptional) access to a classified document.

The semantics of dALC is anchored in the well-known preferential approach to
non-monotonic reasoning [34,35,41] and its extensions [8-11, 16, 19,20], especially
those in DLs [15, 17,28, 38, 43].

Let X be a set. With # X we denote the cardinality of X. A binary relation is a strict
partial order if it is irreflexive and transitive. If < is a strict partial order on X, with
mine X =gef {z € X |thereisnoy € X s.t. y < x} we denote the minimal elements
of X w.r.t. <. A strict partial order on a set X is well-founded if for every ) # X' C X,
min. X’ # (.

Definition 1 (Ordered interpretation). An ordered interpretation is a tuple O =gyt
(A©, .0 <O) such that:

- (AO,-O> is an ALC interpretation, with A° C A©, for each A € C, r© C
A9 x Ao,for eachr € R, and a® € Ao,for each a € |, and

- <O=4er (<G, ... ,<<,(,9#R>, where <& C r? x r?, fori=1,...,#R and such
that each <<f?i is a well-founded strict partial order.

Given O = (A9,.9 <©), the intuition of A® and -© is the same as in a stan-
dard ALC interpretation. The intuition underlying each of the orderings in <© is that
they play the role of preference relations (or normality orderings), in a sense similar
to the preference orders introduced by Shoham [41] in a propositional setting, and in-
vestigated by Kraus et al. [34,35] and others [9-11, 13,26]: The pairs (z,y) that are
lower down in the ordering <<f?i are deemed as most normal (or typical, or expected, or
conventional) in the context of (the interpretation of) r;.

Figure 2 depicts an ordered interpretation in our example, where A© and -© are as in
the interpretation Z shown in Figure 1, and <©= (<[ acc, Kinsion: Chasqua)» Where
hsace= (@611, 6710)}, <Qojop= {(073, 2073), (2073, 2473), (w03, T473),
(l‘oﬂ?g, $5$1), (xgl‘g, l‘5l‘1), ($6$1, 335331)}, and <<hoasQua: {(.135332, .235332), (l‘6$2, JU7$2),
(xs5w2, x722)}. (For the sake of readability, we shall henceforth sometimes write 7-
tuples of the form (x, y) as zy.)

In the following definition we extend ordered interpretations to complex concepts
of the language.

Definition 2 (Interpretation of concepts). Let O = (A® . <O) let r € R and, for
eachx € AC, let 1% =46 r© N ({x} x A©) (i.e., the restriction of the domain of r©
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Fig. 2. An ordered interpretation. For the sake of presentation, we omit the transitive <& -arrows.

to {x}). The interpretation function -© interprets dALC concepts as follows:

TO =get A% 1O =4es 0; (2C)9 =gt A9\ CO;

(CTMD)® =4 C°N DY (CUD)® =4t C°UDO;

(3r.0)° =aet {x € A9 [rO(2) N CP £ 0}; (Vr.C)® =qer {2z € A® [ 19(z) C O
(3r.C)° =qet {z € A® | mingo (rO")(x) N CO £ 0};

(Wr.0)° =qet {x € A | mingo (rC1=)(z) € C°}.

Analogously to the classical case, ¥ and ~ are dual to each other. As an example, in
the ordered interpretation O of Figure 2, we have that (@hasAcc.Classified)® = () =
(= ¥hasAcc.—Classified)©, whereas (FhasAcc.Classified)© = {z¢}.

Defeasible ALC also adds contextual defeasible subsumption statements to knowl-
edge bases. Given C, D € Lg4rc and r € R, a statement of the form C'L,.D is a (con-
textual) defeasible concept inclusion (DCI), read “C' is usually subsumed by D in the
context . A dALC defeasible TBox D (or dTBox D for short) is a finite set of DCIs. A
dALC classical TBox T (or TBox T for short) is a finite set of (classical) subsumption
statements C' C D (i.e., 7 may contain defeasible concept constructs, but not defeasible
concept inclusions). Given 7, D and A, with KB =4.¢ 7 U D U A we denote a dALC
knowledge base, a.k.a. a defeasible ontology, an example of which is given below:

anne : Employee,

Intern £ Employee, anne : ResAssoc,
T— Employee C JhasJob. T, A= bill : Intern,
Graduate C hasQua. T, chris : ResAssoc,
ResAssoc C ¥hasAcc.—Classified doc123 : Classified,

(chris,doc123) : hasAcc
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Employee L 2s10b FhasAcc. Classified,
Intern & phasiob—3hasAcc.Classified,
D = ¢ Intern M Graduate T .5 jopJhasAcc.Classified,
ResAssoc L pasiob—Employee,
ResAssoc L pasquaGraduate

Definition 3 (Satisfaction). Ler O = (A9,.© <«©), r € R, C,D € Lgarc, and
a,b € 1. Define <€ C A® x A© as follows:
<9 =gt {(z,y) | there is (z, z) € 7O s.t. for all (y,v) € r°, ((z,2), (y,v)) € <9}.
The satisfaction relation | is defined as follows:
OFCCD if C°cCDO O+CL,.D if Inin<QCO§DO;
Olra:C if a®€C9; Ol (a,b):r if (a®,b%)€rC.
If O Ik «, then we say O satisfies o. O satisfies a dAALC knowledge base KB, written
O I+ KB, if O Ik « for every a € KB, in which case we say O is a model of KB.

We say ICB is preferentially consistent if it admits a model. We say C € Lyarcc (resp.
r € R) is satisfiable w.r.t. KB if there is a model O of KB s.t. C© # () (resp. r© # ).

One can check that the interpretation O in Figure 2 satisfies the above knowledge
base. To help in seeing why, Figure 3 depicts the contextual orderings on objects (repre-
sented with dotted arrows) induced from those on roles in O as specified in Definition 3.

Fig. 3. Induced orderings on objects from the role orderings in Figure 2. For the sake of presen-
tation, we omit the transitive -<? -arrows.

It follows from Definition 3 that, if <<f?: (), 1.e., if no r-tuple is preferred to another,
then L, reverts to a context-agnostic classical C. A similar observation holds for
individual concept inclusions: if (C' 1 3r.T)® = (), then C T ,.D reverts to C T D.
This reflects the intuition that the context 7 is taken into account through the preference
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order on 7©. In the absence of any preference, the context becomes irrelevant. This
also shows why the classical counterpart of L .. is independent of » — context is taken
into account in the form of a preference order, but preference has no bearing on the
semantics of C.

Contextual defeasible subsumption L . can also be viewed as defeasible subsump-
tion based on a preference order on objects in the domain of 7© obtained from <©.
Non-contextual defeasible subsumption can then be obtained as a special case by intro-
ducing a new role name r and axiom T C 3r.T.

Given a dALC knowledge base KI5, a fundamental task from the standpoint of
knowledge representation and reasoning is that of deciding which statements follow
from KB and which do not.

Definition 4 (Preferential entailment). A statement « is preferentially entailed by a
dALC knowledge base KCIB, written KB |=pres ¢, if O IF ¢ for every O s.t. O IF KB.

The following lemma shows that deciding preferential entailment of GCIs and as-
sertions can be reduced to d.ALC knowledge base satisfiability, a result that will be used
in the definition of a tableau system in Section 4. Its proof is analogous to that of its
classical counterpart in the DL literature and we shall omit it here:

Lemma 1. Let KB be a dALC knowledge base and let a be an individual name not
occurring in KB. For every C;D € Lyare, KBECCEDfKBECN-DLC Lif
KB U {a: C N ~—D} is unsatisfiable. Moreover, for every b € | and every C € Lgarc,
KBE=b:Cif KBU{b: ~C} is unsatisfiable.

It turns out that deciding preferential entailment of DCIs too can be reduced to d.ALC
knowledge base satisfiability, but first, we introduce the tableau-based algorithm for de-
ciding preferential consistency.

4 Tableau for preferential reasoning in d. ALC

In this section, we define a tableau method for deciding preferential consistency of
a dALC knowledge base. Our terminology and presentation follow those of Baader et al. [4]
in the classical case.

We start by observing that, for every ordered interpretation O and every C, D €
Laace, OlFCE Difandonlyif O IF T C =C U D. In that respect, we can assume
w.l.0.g. that all GCIs in a TBox are of the form T C F, for some E € Lg4,c-

Note also that we can assume w.l.0.g. that the ABox is not empty, for if it is, one
can add to it the trivial assertion a : T, for some new individual name a. It is easy to
see that the resulting (non-empty) ABox is preferentially equivalent to the original one.

Definition 5 (Subconcepts). Let C' € Lyarc. The set of subconcepts of C, denoted
sub(C), is defined inductively as follows:

- IfC=A for Ae CU{T, L}, then sub(C) =qer {A};
- IfC=C1NCyo0rC = CyUCYy, then sub(C) =q0¢ {C} Usub(C1) Usub(Cy);
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-IfC = -DorC = 3r.DorC =Vr.DorC = 3r.D or C = ¥r.D, then
sub(C) =ger {C} Usub(D).

Given a knowledge base KB = T U D U A, the set of subconcepts of KB is defined as
sub(ICB) =def sub(T) Usub(D) Usub(A), where

sub(7) =aet Uor per(sub(C) Usub(D)) sub(A) =det Uy,.ccq 5ub(C)
sub(D) =aet U C ’y'Dep(sub(C) Usub(D))

We say that an individual name a appears in an ABox A if A contains an assertion
of the form a : C, (a,b) : 7 or (b,a) : 7, forsome C € Lyarc, € Rand b € I.

Definition 6 (a-concepts). Let A be an ABox and let a be an individual name appear-
ing in A. With cong(a) =ger {C | a : C € A} we denote the set of concepts that o is
an instance of w.r.t. A.

We are now ready for the definition of the expansion rules for d. ALC-concepts. They
are shown in Figure 4. The M-, U-, V-, and 7T -rules work as in the classical case [4],
whereas the remaining rules handle the additional d.ALC constructs according to our
preferential semantics. We shall explain them in more detail below. Before doing so,
we need a few more definitions, in particular of what it means for an individual to be
blocked, as tested by the 3-, 3-, and L -rules and needed to ensure termination of the
algorithm we shall present.

As can be seen in the expansion rules, our tableau method makes use of a few
auxiliary structures, which are built incrementally during the search for a model of the
input knowledge base. The first one is a partial order on pairs of individuals p”;, for
each r € R. Its purpose is to build the skeleton of an r-preference relation on pairs of
individual names appearing in an ABox A. In the unravelling of the complete clash-
free ABox (see below), if there is any, p is used to define a preference relation on the
interpretation of role r in the constructed ordered interpretation.

The second auxiliary structure is a pre-order ¢”; on individual names, for each
r € R. It fits the purpose of keeping track of which individuals are to be seen as more
normal (or typical) relative to others in the application of the L -rule (see Figure 4)
so that the associated p”;-ordering can be completed (by the <-rule) and, in the un-
ravelling of the model, deliver an induced <, that is faithful to ¢”;. (This point will
be made more clearly in the explanation of the relevant rules. In particular, the reason
why o7, is a pre-order and not a partial order like p”y will be explained in the soundness
proof.) Intuitively, o”; corresponds to the converse of the preference order introduced
in Definition 3.

Finally, the third structure used in the expansion rules is a labelling function 77 (a)
mapping an individual name a to the set of concepts a ought to be a minimal instance
of in the context r w.r.t. the ABox .A. The purpose of 77 (a) is threefold: (i) it is needed
to ensure the minimal elements of a concept C inherit all defeasible properties encoded
in the DCIs (see L -rule); (ii) it flags that every individual more preferred than a should
be marked as —C), as performed by the min-rule, and (iii) it plays a role in the blocking
condition (see below) to prevent the generation of an infinite chain of increasingly more
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normal elements in o”. Note that p”, 07y and 774 (a) are only used in the inner workings
of the tableau and are not accessible to the user.

Definition 7 (r-ancestor). Let A be an ABox, a,b € |, andr € R. If (a,b) : r € A, we
say b is an r-successor of a and a is an r-predecessor of b. The transitive closure of the
r-predecessor (resp. r-successor) relation is called r-ancestor (resp. r-descendant).

Definition 8 (c";-ancestor). Let A be an ABox, a,b € |, and r € R. If (a,b) € o7},
we say b is a o”y-successor of a and a is an o’y -predecessor of b. The transitive closure
of the oy-predecessor (resp. o'j-successor) relation is called o"j-ancestor (resp. o'~
descendant).

An individual is called a root if it has neither an r-ancestor nor a ¢’ -ancestor.

M-rule: if 1l.a:CMNDeEA,and
2.{a:Cia:D}Z A
then A:= AU{a:C,a: D}
U-rule: if 1.a:CUD €A, and
2{a:C,a:D}NA=0
then A := AU {a: E}, forsome E € {C, D}
Jrule: if l.a:3r.C € A and
2. thereisno bs.t. {(a,b) : r,b: C} C A, and
3. a is not blocked
then (a) A := AU {(a,c) : r,c: C}, for cnewin A, or
) A:=AU{(a,c):r,c:C,(a,d):r}, forc,dnewin A, and p)y := p4 U {(ad,ac)}
V-rule: if 1.{a:Vr.C,(a,b):7} C A, and

2.b:C¢ A
then A:= AU {b:C}
SJrule: if  l.a:3r.C € A, and

2. there is no bs.t. (i) {(a,b) : r,b: C} C A, and (ii) there is no ¢ s.t. (ac, ab) € pl, and
3. a is not blocked
then A := AU{(a,d) : r,d: C}, for d new in A
N-rule: if 1.{a:¥r.C,(a,b):r} C A and
2. there is no ¢ s.t. (ac, ab) € p’y, and
3b:C¢ A
then A:= AU{b:C}
T-rule: if 1.aappearsin A, T C D€ T,and
2.a:D¢ A
then A:= AU {a: D}
C-rule: if 1.aappearsin A,CL,D € D, and
2.{a:-C,a:D}NA=0,and
3.eithera: C ¢ Aorthereisnobs.t.b: C € Aand (a,b) € oy, and
4. a is not blocked
then (a) A := AU {a: ~C}, or
b)A:=AU{a:C,c:C,c: D}, forcnewin A, o7y := o3 U {(a,c)}, and 74 (c) := {C} or
() A:=AU{a: D}
min-rule: if 1. C € 74(a), and
2.b:-C ¢ A, forsome bs.t. (a,b) € (o74)"
then A:= AU {b:-C}
<-rule: if 1.(b,a) € o)), and
2. there is no ¢ s.t. (ac, bd) € py for every (b,d) : r € A, and
3. a is not blocked
then A := AU {(a,e) : 7}, for enew in A, and p; := ps U {(ae,bf) | (b, f) : 7 € A}

Fig. 4. Expansion rules for the d ALC tableau.

The following definition is used in the expansion rules of Figure 4 to ensure termination:
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Definition 9 (Blocking). Let A be an ABox, a,b € |, and let 0"y and 7'y be as above.
We say that b is blocked by a in A in the context r if (1) a is either an r-ancestor or a
o'y-ancestor of b, (2) con 4(b) C con(a), and (3) 74 (b) C 774 (a). We say b is blocked
in A if itself or some r-ancestor or o”y-ancestor of b is blocked by some individual.

The M-, U-, V-, and 7 -rules in Figure 4 are as in the classical case and need no
further explanation.

The ~-rule creates a most preferred (relative to individual a) r-link to a new indi-
vidual falling under concept C'. Notice that this is achieved by just adding an assertion
(a,d) : rto A, for d new in A, since there shall never be (a, ) with (ae, ad) € p;.

The ¥-rule is analogous to the V-rule, but propagates a concept C' only to those
individuals across preferred r-links (i.e., r-links that are minimal in p).

The 3-rule handles the creation of an r-successor without the information whether
such an r-link is relatively preferred or not. In this case, both possibilities have to be
explored, which is formalised by the or-branching in the rule. In one case, a preferred
r-link is created just as in the ~J-rule; in the other, an r-link is created along with an
extra one which is then set as more preferred to it (in p”,).

The L -rule handles the presence of DCIs in the knowledge base, which have a
global behaviour just as the GCIs in 7. Given an individual name a, it abides by a DCI
C L ,-D if at least one of the following three possibilities holds: (i) a is not in C; or
(if) a falls under C' but there is another instance of C' that is more preferred than a,
or (iii) @ is in D. This is captured by the or-like branch in the rule. Moreover, we
need to check whether the node is not blocked in order to prevent the creation of an
infinitely descending chain of increasingly more preferred objects. (This is needed to
ensure termination of the algorithm and also that the preference relation on pairs of
objects created when unraveling an open tableau is well-founded.)

The min-rule ensures that every individual that is more preferred than a typical
instance of C' is marked as an instance of —C'.

Finally, the <-rule takes care of completing py based on the information in o7 so
that the ordering on objects induced by that on pairs that p” gives rise to coincides with
the ordering on objects given by the strict version of ¢”;. (See also Definition 3.) This
is needed because at the end of the tableau execution, ¢’ is discarded and only p’, is
used to define an ordering on objects against which to check satisfiability of DCIs.

Definition 10 (Complete and clash-free ABox). Let A be an ABox. We say A contains
a clash if there is some a € | and C € Lyarc such that {a : C,a : ~C} C A. We say
A is clash-free if it does not contain a clash. A is complete if it contains a clash or if
none of the expansion rules in Figure 4 is applicable to A.

Let ndexp(-) denote a function taking as input a clash-free ABox .4, a nondeter-
ministic rule R from Figure 4, and an assertion o € A such that R is applicable to «
in A. In our case, the nondeterministic rules are the L-, 3- and L -rules. The function
returns a set ndexp(.A, R, ) containing each of the possible ABoxes resulting from the
application of R to « in A.

The tableau-based procedure for checking consistency of a d ALC knowledge base
KB =T UDU Ais given in Algorithm 1 below. It uses Function Expand to apply the
rules in Figure 4 to A w.r.t. 7 and D. Given an ABox A, with p 4, 0 4 and 74 we denote,

respectively, the sequences (p'¢, ..., p %), (o"d, ... 0 ) and (77, ..., T7*%).
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Algorithm 1: Consistent(K5)

Input: A dALC knowledge base CB=T UDU A
1 if Expand(KB) # () then
2 L return “Consistent”

3 else
4 L return “Inconsistent”

Function Expand(/C13)

Input: A dALC knowledge base CB=T UDU A

1 if A is not complete then

2 Select a rule R that is applicable to A4;

3 if R is a nondeterministic rule then

4 Select an assertion « € A to which R is applicable;
5

6

if there is A’ € ndexp(A, R, ) with Expand(7T UD U A") # () then
| return Expand(7 UD U A")

7 else
L return ()
9 else
10 | Apply Rto A
11 if A contains a clash then
12 L return ()
13 else

14 L return (A, pa,04,74)

Lemma 2 (Termination). For every knowledge base KB, Consistent(XCBB) terminates.

The proof of Lemma 2 is similar to that showing termination of the classical ALC
tableau for checking consistency of general knowledge bases [4, Lemma 4.10].

Theorem 1. Algorithm 1 is sound and complete w.r.t. preferential consistency of dALC
knowledge bases.

Corollary 1. Our tableau-based algorithm is a decision procedure for satisfiability
of dALC knowledge bases.

5 Concluding Remarks

The tableau procedure presented here can be implemented as a proof procedure for
checking consistency of contextual defeasible knowledge bases. It can also be used to
perform preferential (and modular) entailment checking, and hence also used as part
of an algorithm to determine rational closure. In its current form the complexity of the
naive procedure is doubly-exponential, with an optimal proof procedure currently under
investigation.
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