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Abstract. Representation of defeasible information is of interest in description
logics, as it is related to the need of accommodating exceptional instances in
knowledge bases. In this direction, in our previous works we presented a datalog
translation for reasoning on (contextualized) OWL RL knowledge bases with a
notion of justified exceptions on defeasible axioms. While it covers a relevant
fragment of OWL, the resulting reasoning process needs a complex encoding in
order to capture reasoning on negative information. In this paper, we consider the
case of knowledge bases in DL-LiteR, i.e. the language underlying OWL QL. We
provide a definition for DL-LiteR knowledge bases with defeasible axioms and
study their properties. The limited form of DL-LiteR axioms allows us to for-
mulate a simpler encoding into datalog (under answer set semantics) with direct
rules for reasoning on negative information. The resulting materialization method
gives rise to a complete reasoning procedure for instance checking in DL-LiteR
with defeasible axioms.

1 Introduction

Representing defeasible information is a topic of interest in the area of description log-
ics (DLs), as it is related to the need of accommodating the presence of exceptional in-
stances in knowledge bases. This interest led to different proposals for non-monotonic
features in DLs based on different notions of defeasibility, e.g. [2,4,11,18]. In this di-
rection, we presented in [6] an approach to represent defeasible information in contex-
tualized DL knowledge bases by introducing a notion of justifiable exceptions: general
defeasible axioms can be overridden by more specific exceptional instances if their ap-
plication would provably lead to inconsistency. Reasoning in SROIQ-RL (i.e. OWL
RL) knowledge bases is realized by a translation to datalog, which provides a com-
plete materialization calculus [19] for instance checking and conjunctive query (CQ)
answering. While the translation covers the full SROIQ-RL language, it needs a com-
plex encoding to represent reasoning on exceptions. In particular, it relies on the use
of proofs by contradiction to ensure completeness in presence of negative disjunctive
information.

In this paper, we consider the case of knowledge bases with defeasible axioms
in DL-LiteR [14], which corresponds to the language underlying the OWL QL frag-
ment [21]. It is indeed interesting to show the applicability of our defeasible reasoning



approach to the well-known DL-Lite family: in particular, by adopting DL-LiteR as
the base logic we need to take unnamed individuals introduced by existential formu-
las into account, especially for the justifications of exceptions. Moreover, we show that
due to the restricted form of its axioms, the DL-LiteR language allows us to give a
less involved datalog encoding in which reasoning on negative information is directly
encoded in datalog rules (cf. discussion on “justification safeness” in [6]).
The contributions of this paper can be summarized as follows:

– In Section 3 we provide a definition of defeasible DL knowledge base (DKB) with
justified models that draws from the definition of Contextualized Knowledge Repos-
itories (CKR) [8,9,24] with defeasible axioms provided in [6]. This allows us to con-
centrate on the defeasible reasoning aspects without considering the aspects related
to the representation of context in the CKR framework.

– For DKBs based on DL-LiteR, we provide in Section 4 a translation to datalog (un-
der answer set semantics [16]) that alters the CKR translation in [5,6] and prove its
correctness with respect to instance checking. In particular, the fact that reasoning on
negative disjunctive information is not needed allow us to provide a simpler transla-
tion (without the use of the involving “test” environments mechanism of [6]).

– In Section 5 we provide complexity results for reasoning problems on DL-LiteR-
based DKBs. Deciding satisfiability of such a DKB with respect to justified models
is tractable, while inference of an axiom under cautious (i.e., certainty) semantics is
co-NP-complete in general.

Further details of the translation are provided in the accompanying Technical Report [7].

2 Preliminaries

Description Logics and DL-LiteR language. We assume the common definitions of
description logics [1] and the definition of the logic DL-LiteR [14]: we summarize in
the following the basic definitions used in this work.

A DL vocabulary Σ consists of the mutually disjoint countably infinite sets NC of
atomic concepts, NR of atomic roles, and NI of individual constants. Complex con-
cepts are then recursively defined as the smallest sets containing all concepts that can
be inductively constructed using the constructors of the considered DL language. A
DL-LiteR knowledge base K = 〈T ,R,A〉 consists of: a TBox T containing general
concept inclusion (GCI) axioms C v D where C,D are concepts, of the form:

C := A | ∃R (1)
D := A | ¬C | ∃R (2)

where A ∈ NC and R ∈ NR; an RBox R containing role inclusion (RIA) axioms
S v R, reflexivity, irreflexivity, inverse and role disjointness axioms, where S,R are
roles; and an ABox A composed of assertions of the forms D(a), where D is a right-
side concept, R(a, b), with R ∈ NR and a, b ∈ NI.

A DL interpretation is a pair I = 〈∆I , ·I〉 where ∆I is a non-empty set called
domain and ·I is the interpretation function which assigns denotations for language



elements: aI ∈ ∆I , for a ∈ NI;AI ⊆ ∆I , forA ∈ NC;RI ⊆ ∆I×∆I , forR ∈ NR.
The interpretation of non-atomic concepts and roles is defined by the evaluation of their
description logic operators (see [14] for DL-LiteR). An interpretation I satisfies an
axiom φ, denoted I |=DL φ, if it verifies the respective semantic condition, in particular:
for φ = D(a), aI ∈ DI ; for φ = R(a, b), 〈aI , bI〉 ∈ RI ; for φ = C v D, CI ⊆ DI

(resp. for RIAs). I is a model of K, denoted I |=DLK, if it satisfies all axioms of K.
Without loss of generality, we adopt the standard name assumption (SNA) in the

DL context (see [12,15,22] for more details). That is, we assume an infinite subset
NIS ⊆ NI of individual constants, called standard names s.t. in every interpretation I
we have (i) ∆I = NIIS = {cI | c ∈ NIS}; (ii) cI 6= dI , for every distinct c, d ∈ NIS .
Thus, we may assume that ∆I = NIS and cI = c for each c ∈ NIS . The unique name
assumption (UNA) corresponds to assuming c 6= d for all constants in NI \ NIS resp.
occurring in the knowledge base.

We confine here to knowledge bases without reflexivity axioms. The reason is that
reflexivity allows one to derive positive properties for any (named and unnamed) indi-
vidual; this complicates the treatment of defeasible axioms (cf. Discussion section).

Datalog Programs and Answer Sets. We express our rules in datalog with negation
under answer sets semantics. In fact, we use here two kinds of negation3: strong (“clas-
sical”) negation ¬ and weak (default) negation not under the interpretation of answer
sets semantics [16]; the latter is in particular needed for representing defeasibility.

A signature is a tuple 〈C,P〉 of a finite set C of constants and a finite set P of
predicates. We assume a set V of variables; the elements of C∪V are terms. An atom
is of the form p(t1, . . . , tn) where p ∈ P and t1, . . . , tn, are terms. A literal l is either
a positive literal p or a negative literal ¬p, where p is an atom and ¬ is strong negation.
Literals of the form p, ¬p are complementary. We denote with ¬.l the opposite of literal
l, i.e., ¬.p = ¬p and ¬.¬p = p for an atom p. A (datalog) rule r is an expression:

a← b1, . . . , bk, not bk+1, . . . , not bm. (3)

where a, b1, . . . , bm are literals and not is negation as failure (NAF). We denote with
Head(r) the head a of rule r and with Body(r) = {b1, . . . , bk, not bk+1, . . . , not bm}
the body of r, respectively. A (datalog) program P is a finite set of rules. An atom (rule
etc.) is ground, if no variables occur in it. A ground substitution σ for 〈C,P〉 is any
function σ :V→ C; the ground instance of an atom (rule, etc.) χ from σ, denoted χσ,
is obtained by replacing in χ each occurrence of variable v ∈ V with σ(v). A fact H
is a ground rule r with empty body. The grounding of a rule r, grnd(r), is the set of all
ground instances of r, and the grounding of a program P is grnd(P ) =

⋃
r∈P grnd(r).

Given a program P , the (Herbrand) universe UP of P is the set of all constants
occurring in P and the (Herbrand) base BP of P is the set of all the ground literals
constructable from the predicates in P and the constants in UP . An interpretation I ⊆
BP is any satisfiable subset ofBP (i.e., not containing complementary literals); a literal
l is true in I , denoted I |= l, if l ∈ I , and l is false in I if ¬.l is true. Given a rule
r ∈ grnd(P ), we say that Body(r) is true in I , denoted I |= Body(r), if (i) I |= b for

3 Strong negation can be easily emulated using weak negation. While it does not yield higher
expressiveness, it is more convenient for presentation.



each literal b ∈ Body(r) and (ii) I 6|= b for each literal not b ∈ Body(r). A rule r is
satisfied in I , denoted I |= r, if either I |= Head(r) or I 6|= Body(r). An interpretation
I is a model of P , denoted I |= P , if I |= r for each r ∈ grnd(P ); moreover, I is
minimal, if I ′ 6|= P for each subset I ′ ⊂ I .

Given an interpretation I for P , the (Gelfond-Lifschitz) reduct of P w.r.t. I , denoted
by GI(P ), is the set of rules obtained from grnd(P ) by (i) removing every rule r such
that I |= l for some not l ∈ Body(r); and (ii) removing the NAF part from the bodies
of the remaining rules. Then I is an answer set of P , if I is a minimal model of GI(P );
the minimal model is unique and exists iff GI(P ) has some model. Moreover, if M is
an answer set for P , then M is a minimal model of P . We say that a literal a ∈ BP is a
consequence of P and write P |= a if every answer set M of P fulfills M |= a.

3 DL Knowledge Base with Justifiable Exceptions

In this paper we concentrate on reasoning on a DL knowledge base enriched with de-
feasible axioms, whose syntax and interpretation are analogous to [6]. With respect to
the contextual framework presented in [6], this corresponds to reasoning inside a single
local context: while this simplifies presentation of the defeasibility aspects and the re-
sulting reasoning method for the case of DL-LiteR, it can be generalized to the original
case of multiple local contexts.
Syntax. Given a DL language LΣ based on a DL vocabularyΣ = NCΣ ∪NRΣ ∪NIΣ ,
a defeasible axiom is any expression of the form D(α), where α ∈ LΣ .

We denote withLD
Σ the DL language extendingLΣ with the set of defeasible axioms

in LΣ . On the base of such language, we provide our definition of knowledge base with
defeasible axioms.

Definition 1 (defeasible knowledge base, DKB). A defeasible knowledge base (DKB)
K on a vocabulary Σ is a DL knowledge base over LD

Σ .

In the following, we tacitly consider DKBs based on DL-LiteR.

Example 1. We introduce a simple example showing the definition and interpretation of
a defeasible existential axiom. In the organization of a university research department,
we want to specify that “in general” department members need also to teach at least a
course. On the other hand, PhD students, while recognized as department members, are
not allowed to hold a course. We can represent this scenario as a DKB Kdept where:

Kdept :


D(DeptMember v ∃hasCourse),Professor v DeptMember ,
PhDStudent v DeptMember ,PhDStudent v ¬∃hasCourse,
Professor(alice), PhDStudent(bob)


Intuitively, we want to override the fact that there exists some course assigned to the
PhD student bob. On the other hand, for the individual alice no overriding should hap-
pen and the defeasible axiom can be applied. 3

Semantics. We can now define a model based interpretation of DKBs, in particular by
providing a semantic characterization to defeasible axioms.



Similarly to the case of SROIQ-RL in [6], we can express DL-LiteR knowledge
bases in first-order (FO) logic, where every axiom α ∈ LΣ is translated into an equiv-
alent FO-sentence ∀x.φα(x) where x contains all free variables of φα depending on
the type of the axiom. The translation, depending on the axiom types, can be defined
analogously to the FO-translation presented in [6]. In the case of existential axioms of
the kind α = A v ∃R, the FO-translation φα(x) is defined as:

A(x1)→ R(x1, fα(x1)) ;
that is, we introduce a Skolem function fα(x1) which represents new “existential” in-
dividuals. Formally, for every right existential axiom α ∈ LΣ , we define a Skolem
function fα : NI 7→ E where E is a set of new individual constants not appearing in NI.
In particular, for a set of individual names N ⊆ NI, we will write sk(N) to denote the
extension of N with the set of Skolem constants for elements in N .

After this transformation the resulting formulas φα(x) amount semantically to Horn
formulas, since left-side concepts C can be expressed by an existential positive FO-
formula, and right-side concepts D by a conjunction of Horn clauses. The following
property from [6, Section 3.2] is then preserved for DL-LiteR knowledge bases.

Lemma 1. For a DL knowledge baseK onLΣ , its FO-translation φK :=
∧
α∈K∀xφα(x)

is semantically equivalent to a conjunction of universal Horn clauses.

With these considerations on the definition of FO-translation, we can now provide our
definition of axiom instantiation:

Definition 2 (axiom instantiation). Given an axiom α ∈ LΣ with FO-translation
∀x.φα(x), the instantiation of α with a tuple e of individuals in NIΣ , written α(e),
is the specialization of α to e, i.e., φα(e), depending on the type of α.

Note that, since we are assuming standard names, this basically means that we can
express instantiations (and exceptions) to any element of the domain (identified by a
standard name in NIΣ). We next introduce clashing assumptions and clashing sets.

Definition 3 (clashing assumptions and sets). A clashing assumption is a pair 〈α, e〉
such that α(e) is an axiom instantiation for an axiom α ∈ LΣ . A clashing set for a
clashing assumption 〈α, e〉 is a satisfiable set S that consists of ABox assertions over
LΣ and negated ABox assertions of the forms¬C(a) and¬R(a, b) such that S∪{α(e)}
is unsatisfiable.

A clashing assumption 〈α, e〉 represents that α(e) is not satisfiable, while a clashing set
S provides an assertional “justification” for the assumption of local overriding ofα on e.
We can then extend the notion of DL interpretation with a set of clashing assumptions.

Definition 4 (CAS-interpretation). A CAS-interpretation is a structure ICAS = 〈I, χ〉
where I = 〈∆I , ·I〉 is a DL interpretation forΣ and χ is a set of clashing assumptions.

By extending the notion of satisfaction with respect to CAS-interpretations, we can
disregard the application of defeasible axioms to the exceptional elements in the sets
of clashing assumptions. For convenience, we call two DL interpretations I1 and I2
NI-congruent, if cI1 = cI2 holds for every c ∈ NI.



Definition 5 (CAS-model). Given a DKB K, a CAS-interpretation ICAS = 〈I, χ〉 is
a CAS-model for K (denoted ICAS |= K), if the following holds:

(i) for every α ∈ LΣ in K, I |= α;
(ii) for every D(α) ∈ K (where α ∈ LΣ), with |x|-tuple d of elements in NIΣ such

that d /∈ {e | 〈α, e〉 ∈ χ}, we have I |= φα(d).

We say that a clashing assumption 〈α, e〉 ∈ χ is justified for a CAS model ICAS =
〈I, χ〉, if some clashing set S = S〈α,e〉 exists such that, for every CAS-model I ′CAS =
〈I ′, χ〉 ofK that is NI-congruent with ICAS , it holds that I ′ |= S〈α,e〉. We then consider
as DKB models only the CAS-models where all clashing assumptions are justified.

Definition 6 (justified CAS model and DKB model). A CAS model ICAS = 〈I, χ〉
of a DKB K is justified, if every 〈α, e〉 ∈ χ is justified. An interpretation I is a DKB
model of K (in symbols, I |= K), if K has some justified CAS model ICAS = 〈I, χ〉.

Example 2. Reconsidering Kdept in Example 1, a CAS-model providing the intended
interpretation of defeasible axioms is ICASdept

= 〈I, χdept〉 where χdept = {〈α, bob〉}
with α = DeptMember v ∃hasCourse . The fact that this model is justified is verifi-
able considering that for the clashing set S = {DeptMember(bob),¬∃hasCourse(bob)}
we have I |= S. On the other hand, note that a similar clashing assumption for alice is
not justifiable: it is not possible from the contents of Kdept to derive a clashing set S′

such that S′ ∪{α(alice)} is unsatisfiable. By Definition 5, this allows to apply α to this
individual as expected and thus I |= ∃hasCourse(alice). 3

DKB-models have interesting properties similar as CKR-models in [6]. In particular, we
mention here that for DKB-model ICAS = 〈I, χ〉, each clashing assumption 〈α, e〉 ∈ χ
is over individuals of the knowledge base, cf. [6, Prop. 5, context focus]; this is because
in absence of reflexivity, no positive properties (which occur in all clashing sets), can be
proven for other elements. Furthermore, the clashing assumptions are non-redundant,
i.e., no NI-congruent DKB-model I ′CAS = 〈I ′, χ′〉 exists such that χ′ ⊂ χ, cf. [6,
Prop. 6, minimality of justification].

4 Datalog Translation for DL-LiteR DKB

We present a datalog translation for reasoning on DL-LiteR DKBs which refines the
translation provided in [6]. The translation provides a reasoning method for positive in-
stance queries w.r.t. entailment. An important aspect of this translation is that, due to the
form of DL-LiteR axioms, no inference on disjunctive negative information is needed
for the reasoning on derivations of clashing sets. Thus, differently from [6], reasoning
by contradiction using “test environments” is not needed and we can directly encode
negative reasoning as rules on negative literals: with respect to the discussion in [6],
we can say that DL-LiteR thus represents an inherently “justification safe” fragment
which then allows us to formulate such a direct datalog encoding. With respect to the
interpretation of right-hand side existential axioms, we follow the approach of [19]: for
every axiom of the kind α = A v ∃R, an auxiliary abstract individual auxα is added
in the translation to represent the class of all R-successors introduced by α.



We introduce a normal form for axioms of DL-LiteR which allows us to simplify
the formulation of reasoning rules:4 we can provide rules to transform any DL-LiteR
DKB into normal form and show that the rewritten DKB is equivalent to the original.
Translation rules overview. We can now present the components of our datalog trans-
lation for DL-LiteR based DKBs.5 As in the original formulation in [5,6], which ex-
tended the encoding without defeasibility proposed in [9] (inspired by the material-
ization calculus in [19]), the translation includes sets of input rules (which encode DL
axioms and signature in datalog), deduction rules (datalog rules providing instance level
inference) and output rules (that encode in terms of a datalog fact the ABox assertion
to be proved). The translation is composed by the following sets of rules:
DL-LiteR input and output rules: rules in Idlr encode as datalog facts the DL-LiteR
axioms and signature of the input DKB. For example, in the case of existential axioms,
these are translated as A v ∃R 7→ {supEx(A,R, auxα)}: note that this rule, in the
spirit of [19], introduces an auxiliary element auxα, which intuitively represents the
class of all new R-successors generated by the axiom α. Similarly, output rules in O
encode in datalog the ABox assertions to be proved.
DL-LiteR deduction rules: rules in Pdlr add deduction rules for ABox reasoning. In
the case of existential axioms, the rule (pdlr-supex) introduces a new relation to the
auxiliary individual as follows:

tripled(x, r, x′)← supEx(y, r, x′), instd(x, y).

In this translation the reasoning on negative information is directly encoded by “contra-
positive” versions of the rules. For example, with respect to previous rule, we have:

¬instd(x, y)← supEx(y, r, w), const(x), all nrel(x, r).

where all nrel(x, r) verifies that ¬triple(x, r, y) holds for all const(y) by an iter-
ation over all constants.
Defeasible axioms input translations: the set of input rules ID provides the translation
of defeasible axioms D(α) in the DKB: in other words, they are used to specify that the
axiom α need to be considered as defeasible. For example, D(A v ∃R) is translated to
def supex(A,R, auxα).
Overriding rules: rules for defeasible axioms provide the different conditions for the
correct interpretation of defeasibility: the overriding rules define conditions (corre-
sponding to clashing sets) for recognizing an exceptional instance. For example, for
axioms of the form D(A v ∃R), the translation introduces the rule:

ovr(supEx, x, y, r, w)← def supex(y, r, w), instd(x, y), all nrel(x, r).

Note that in this version of the calculus, the reasoning on negative information (of the
clashing sets) is directly encoded in the deduction rules.
Defeasible application rules: another set of rules in PD defines the defeasible appli-
cation of such axioms: intuitively, defeasible axioms are applied only to instances that
have not been recognized as exceptional. For example, the rule (app-supex) applies a
defeasible existential axiom D(A v ∃R):

4 The form of DL-LiteR axioms in normal form is shown in [7, Table 1].
5 The full set of rules can be found in the Technical Report [7].



tripled(x, r, x′)← def supex(y, r, x′), instd(x, y), not ovr(supEx, x, y, r, x′).

Translation process. Given a DKB K in DL-LiteR normal form, a program PK(K)
that encodes query answering for K is obtained as:

PK(K) = Pdlr ∪ PD ∪ Idlr(K) ∪ ID(K)
Moreover, PK(K) is completed with a set of supporting facts about constants: for ev-
ery literal nom(c), supEx(a, r, c) or def supex(a, r, c) in PK(K), const(c) is added
to PK(K). Then, given an arbitrary enumeration c0, . . . , cn s.t. each const(ci) ∈
PK(K), the facts first(c0), last(cn) and next(ci, ci+1) with 0 ≤ i < n are added
to PK(K). Query answering K |= α is then obtained by testing whether the (in-
stance) query, translated to datalog by O(α), is a consequence of PK(K), i.e., whether
PK(K) |= O(α) holds.
Correctness. The presented translation procedure provides a sound and complete ma-
terialization calculus for instance checking on DL-LiteR DKBs in normal form.

As in [6], the proof for this result can be verified by establishing a correspondence
between minimal justified models of K and answer sets of PK(K).6 Besides the sim-
pler structure of the final program, the proof is simplified by the direct formulation of
rules for negative reasoning. Another new aspect of the proof in the case of DL-LiteR
resides in the management of existential axioms, since there is the need to define a
correspondence between the auxiliary individuals in the translation and the interpreta-
tion of existential axioms in the semantics: we follow the approach of Krötzsch in [19],
where, in building the correspondence with justified models, auxiliary constants auxα

are mapped to the class of Skolem individuals for existential axiom α.
As in [6], in our translation we consider UNA and named models, i.e. interpretations

restricted to sk(NK), where NK are the individuals that appear in the input K. Thus we
can show the correctness result on Herbrand models, that will be denoted Î(χ).

Let ICAS = 〈I, χ〉 be a justified named CAS-model. We define the set of overriding
assumptions OVR(ICAS ) = { ovr(p(e)) | 〈α, e〉 ∈ χ, Idlr(α) = p }. Given a CAS-
interpretation ICAS , we can define a corresponding Herbrand interpretation I(ICAS )
for PK(K): the construction is similar to the one in [6], by extending it to negative
literals and providing an interpretation for existential individuals. The next proposition
shows that the least Herbrand model of K can be represented by the answer sets of the
program PK(K).

Proposition 1. Let K be a DKB in DL-LiteR normal form. Then:

(i). for every (named) justified clashing assumption χ, the interpretation S = I(Î(χ))
is an answer set of PK(K);

(ii). every answer set S of PK(K) is of the form S = I(Î(χ)) where χ is a (named)
justified clashing assumption for K.

The correctness result directly follows from Proposition 1.

Theorem 1. Let K be a DKB in DL-LiteR normal form, and let α ∈ LΣ such that
O(α) is defined. Then K |= α iff PK(K) |= O(α).

6 A proof sketch for the following results is provided in [7].



We note that by further normalization of the DKB, the translation can be slimmed at the
cost of new symbols. E.g., existential restrictions ∃R can be named (A∃R ≡ ∃R) and
replaced throughout by A∃R; however, we refrain here from further discussion.

5 Complexity of Reasoning Problems

We first consider the satisfiability problem, i.e., deciding whether a given DL-LiteR
DKB has some DKB-model. As it turns out, defeasible axioms do not increase the
complexity with respect to satisfiability of DL-LiteR, due to the following property. Let
ind(K) denote the set of individuals occurring in K.

Proposition 2. Let K be a DL-LiteR DKB, and let χ0 = {〈α, e〉 | D(α) ∈ K, e is
over ind(K) } be the clashing assumption that makes an exception to every defeasible
axiom over the individuals occurring in K. Then K has some DKB-model iff K has
some CAS-model ICAS = 〈I, χ0〉.

Informally, the only if direction holds because any DKB-model of K is also a CAS-
model of K; as justified exceptions are only on ind(K), and making more exceptions
does not destroy CAS-modelhood, some CAS-model with clashing assumptions χ0 ex-
ists. Conversely, if K has some CAS-model of the form ICAS = 〈I, χ0〉, a justified
CAS-model can be obtained by setting χ = χ0 and trying to remove, one by one, each
clashing assumption 〈α, e〉 from χ; this is possible, if K has some NI-congruent model
〈I ′, χ \ {〈α, e〉}〉. After looping through all clashing assumptions in χ0, we have that
some some NI-congruent model 〈I ′, χ〉 exists that is justified.

Thus, DKB-satisfiability testing boils down to CAS-satisfiability checking, which
can be done using the datalog encoding described in the previous section. From the
particular form of that encoding, we obtain the following result.

Theorem 2. Deciding whether a given DL-LiteR DKB K has some DKB-model is
NLogSpace-complete in combined complexity and FO-rewritable in data complexity.

To see this, the program PK(K) for K has in each rule at most one literal with an in-
tentional predicate in the body, i.e., a predicate that is defined by proper rules. Thus, we
have a linear datalog program with bounded predicate arity, for which derivability of an
atom is feasible in nondeterministic logspace, as this can be reduced to a graph reach-
ability problem in logarithmic space. The NLogSpace-hardness is inherited from the
combined complexity of KB satisfiability DL-LiteR, which is NLogSpace-complete.

As regards data-complexity, it is well-known that instance checking and similarly
satisfiability testing for DL-LiteR are FO-rewritable [14]; this has been shown by a
reformulation algorithm, which informally unfolds the axioms α(x) (i.e., performs res-
olution viewing axioms as clauses), such that deriving an instance A(a) reduces to
presence of certain assertions in the ABox. This unfolding can be adorned by typing
each argument x∈x of an axiom to whether it is an individual from the DKB (type
i), or an unnamed individual (type u); for example, α(x) = A v B yields αi(x) and
αu(x). The typing carries over to unfolded axioms. In unfolding, one omits typed ver-
sions of defeasible axioms D(α(x)), which w.l.o.g. have no existential restrictions;



e.g., for D(α(x)) = D(B v C), one omits αi(x). In this way, instance derivation (and
similarly satisfiability testing) is reduced to presence of certain ABox assertions again.

On the other hand, entailment checking is intractable: while some justified model is
constructible in polynomial time, there can be exponentially many clashing assumptions
for such models, even under UNA; finding a DKB model that violates an axiom turns
out to be difficult.

Theorem 3. Given a DKB K and an axiom α, deciding K |= α is co-NP-complete;
this holds also for data complexity and instance checking, i.e., α is of the form A(a) for
some assertion A(a).

Proof (Sketch). In order to refute K |= α, we can exhibit that a justified CAS-model
ICAS = 〈I, χ〉 of K named relative to sk(N) exists such that I 6|= α, with NK ⊆
N ⊆ NI \ NIS and where N is of small (linear) size and includes fresh individual
names such that I violates the instance of α for some elements e over sk(N). We can
guess clashing assumptions χ over N , where each 〈α, e〉 ∈ χ has a unique clashing set
Sα(e), and a partial interpretation over N , and check derivability of all Sα(e) and that
the interpretation extends to a model of K relative to sk(N) in polynomial time. Thus,
we overall obtain membership of entailment in co-NP.

The co-NP-hardness can be shown by a reduction from inconsistency-tolerant rea-
soning from DL-LiteR KBs under AR-semantics [20]. Given a DL-LiteR KB K =
A ∪ T with ABox A and TBox T , a repair is a maximal subset A′ ⊆ A such that
K′ = A′ ∪ T is satisfiable; an assertion α is AR-entailed by K, if K′ |= α for every
repair K′ of K. As shown by Lembo et al., deciding AR-entailment is co-NP-hard; this
continues to hold under UNA and if all assertions involve only concept resp. role names.

Let K̂= T ∪ {D(α) | α∈A}, i.e., all assertions from K are defeasible. As easily
seen, the maximal repairs A′ correspond to the justified clashing assumptions by χ =
{〈α, e〉 | α(e) ∈ A \ A′}. Thus, K AR-entails α iff K̂ |= α, proving co-NP-hardness.

To show the result for data complexity, if we do not allow for defeasible assertions,
we can adjust the transformation, where we emulate D(A(a)) by an axiom D(A′ v A)
and make the assertion A′(a), where A′ is a fresh concept name; similarly D(R(a, b))
is emulated by D(R′ v R) plus R′(a, b), where R′ is a fresh role name. As Lembo et
al. proved co-NP-hardness under data-complexity, the claimed result follows. 2

We observe that the co-NP-hardness proof in [20] used many role restrictions and in-
verse roles; for combined complexity, co-NP-hardness of entailment in absence of any
role names can be derived from results about propositional circumscription in [13]. In
particular, [13, Theorem 16] showed that deciding whether an atom z is a circumscrip-
tive consequence of a positive propositional 2CNF F if all variables except z are min-
imized (i.e., in circumscription notation CIRC (F ;P, ∅; {z}) |= z), is co-NP-hard;7

such an inference can be easily emulated by entailment from a DKB constructed from
F and z, where propositional variables are used as concept names.

Indeed, for each clause c = x ∨ y in F , we add to K an axiom x v ¬y if z 6= x, y
and an axiom x v z (resp. y v z) if z= y (resp. x= z). Furthermore, for each variable

7 The models of CIRC (F ;P, ∅; {z}) are all models M of F such that no model M ′ of F exists
with M ′ \ {z} ⊂M \ {z}.



x 6= z, we add D(x(a)), where a is a fixed individual. This effects that justified DKB-
models of K correspond to the models of CIRC (F ;P, ∅; {z}), where the minimal-
ity of exceptions in justified DKB-models emulates the minimality of circumscription
models; thus, K |= z(a) iff CIRC (F ;P, ∅; {z}) |= z. Similarly as above, defeasible
assertions could be moved to defeasible axioms D(c v v) with a single assertion c(a).

While this establishes co-NP-hardness of entailment for combined complexity un-
der UNA when roles are absent, the data complexity is tractable; this is because we can
consider the axioms for individuals a separately, and if the GCI axioms are fixed only
few axioms per individual exist. This is similar if role axioms but no existential restric-
tions are permitted, as we can concentrate on the pairs a, b and b, a of individuals. The
questions remains how much of the latter is possible while staying tractable.

6 Discussion and Conclusion

Related works. The relation of the justified exception approach to nonmonotonic de-
scription logics was discussed in [6], where in particular an in-depth comparison w.r.t.
typicality in DLs [18], normality [3] and overriding [2] was given. A distinctive feature
of our approach, linked to the interpretation of exception candidates as different clash-
ing assumptions, is the possibility to “reason by cases” inside the alternative justified
models (cf. the discussion of the classic Nixon Diamond example [6, Section 7.4]). The
introduction of non-monotonic features in the DL-Lite family and, more in general, to
low complexity DLs has been the subject of many works, mostly with the goal of pre-
serving the low complexity properties of the base logic in the extension. For example,
in [3] a study of the complexity of reasoning with circumscription in DL-LiteR and EL
was presented. Similarly, in [17] the authors studied the application of their typicality
approach to DL-Litec and EL⊥. A recent work in this direction is [23], where a defeasi-
ble version of EL⊥ was obtained by modelling higher typicality by extending classical
canonical models in EL⊥ with multiple representatives of concepts and individuals.

Summary and future directions. In this paper, we applied the justified exception ap-
proach from [6] to reason on DL-LiteR knowledge bases with defeasible axioms. We
have shown that the limited language of DL-LiteR allows us to formulate a direct data-
log translation to reason on derivations for negative information in instance checking.

The form of DL-LiteR axioms enables us to concentrate on exceptions in absence
of reflexivity over the individuals known from the KB: however, we are interested in
studying the case of languages allowing exceptions on unnamed individuals (generated
by existential axioms) by providing them with a suitable semantic characterization. In
particular, if reflexivity axioms are allowed, positive properties are provable for un-
named individuals (i.e., standard names). To account for this, multiple auxiliary ele-
ments auxα may be necessary to enable different exceptions for unnamed individuals
reached from different individuals; this remains for further investigation.

Moreover, we plan to apply the current results on DL-LiteR in the framework of
Contextualized Knowledge Repositories with hierarchies as in [10].
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