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Abstract. Catering for ontology summary and reuse, several approaches
such as modularisation and forgetting of symbols have been developed in
order to provide users smaller sets of relevant axioms of an ontology. We
consider different module extraction techniques and show how they relate
to each other. We also consider the notion of uniform interpolation that
is underlying forgetting. We show that significant improvements in the
performance of forgetting can be obtained by applying a forgetting tool
to ontology modules instead of the entire ontology. We investigate com-
bining several module notions with uniform interpolation and provide
a preliminary evaluation forgetting signatures based on the European
Renal Association subset from SNOMED CT. Possible explanations for
why modularity helps forgetting symbols from large-scale ontologies in
practice are given. To facilitate the experiments, we develop a signa-
ture extension algorithm for the SNOMED CT ontology to additionally
include more symbols relevant for users.

1 Introduction

SNOMED CT1 is the most comprehensive, precise and widespread clinical on-
tology in the world with ample clinical specialties and requirements. The logic
profile of SNOMED CT is a subset of the OWL 2 EL profile.2 Description Logic
with its reasoning capabilities plays an important role in the development and
maintenance of SNOMED CT. The latest version of SNOMED CT from the
year 2019 contains more than 340 000 axioms. The number of axioms increased
by about 10% compared to the version from 2016.

SNOMED CT is still being developed and continuously updated. Maintain-
ing and developing an ontology such as SNOMED CT is expensive and time-
consuming. It is often more efficient for the ontology engineer to work with a
subset of the ontology that contains all necessary information instead of the en-
tire ontology. For example, the concept kidney disease (disorder) has more than
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1 https://www.snomed.org
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1 200 sub-concepts. When knowledge engineers redesign the concept model for a
sub-hierarchy, it is useful to present developers a succinct sub-ontology to review
and design the concept model.

A common use case for SNOMED CT is clinical data analytics. For instance,
consider the scenario where the doctor would like to find diseases that have an
inflammatory morphology and a finding site of kidney structure based on mor-
phologies and/or finding sites. Instead of querying the whole of SNOMED CT,
it would be more efficient to simply query a small subset of ontology containing
the necessary axioms to preserve the relevant information.

Generally speaking, a module of an ontology is a subset of the ontology that
can function in the same way as the original ontology in a specific context. This
is formalised using a suitable inseparability relation. Model-theoretic and de-
ductive inseparability relations have been studied. Several module notions based
on inseparability relations have been proposed including plain, self-contained
and depleting modules [10,12]. The system MEX3 has been implemented to ex-
tract minimal depleting and self-contained modules of acyclic ELI-terminologies.
Other notions are minimal subsumption modules [5, 7, 14], which are subsets of
an ontology that preserve subsumption queries. The evaluation in [7] shows that
minimal subsumption modules for EL/ELHr-terminologies are generally much
smaller than MEX-modules. However, deciding model-theoretic inseparability
is expensive. The algorithm for computing minimal subsumption modules from
ELHr-terminologies runs in exponential time. Approximate modules, such as
locality-based modules [8] and other module extraction techniques via Datalog
reasoning [21], can be computed rather efficiently. However, the resulting mod-
ules are not guaranteed to be minimal.

Concepts in the medical domain can be complicated to comprehend. Together
with the fact that SNOMED CT contains more than 300 000 medical terms, it
becomes clear that it can be very useful for ontology development or clinical
data analytics to create an abstraction or summary of the ontology that only
uses the terms that the developers are interested in.

Uniform interpolation and forgetting, as techniques of ontology abstraction,
have attracted a lot of attention recently [25, 26]. Algorithms based on reso-
lution have been developed for expressive description logics [15–17, 28, 30]. It
has been shown that deciding the existence of uniform interpolants is 2-EXP-
Complete for ALC-TBoxes. Uniform interpolants do not always exist in EL and
ALC-TBoxes [10]. However, uniform interpolants always exist in DL-Lite on-
tologies [12]. Some approaches are proposed to compute uniform interpolants
for lightweight description logics EL [11, 18]. Deciding existence of uniform in-
terpolants in an EL ontology, such as SNOMED CT, is ExpTime-complete [19].
In the worst case, the size of uniform interpolants could be 3-EXP [20].

Given the high complexity result of finding uniform interpolants, in this pa-
per, we are interested in computing uniform interpolants on SNOMED CT in
practice. The signature in practice is usually much smaller than the number of
symbols in the whole ontology, which means that the forgetting tool has to forget
most of the symbols in the ontology. It is especially difficult to forget role names.

3 https://cgi.csc.liv.ac.uk/~konev/software/



Precomputing ontology modules can help to reduce the number of symbols that
need to be forgotten and also decrease the size of ontology, which motivates us
to consider using modularity to approximate forgetting tools when computing
uniform interpolants in practice.

This paper describes on-going work in a collaboration with IHTSDO about
abstraction on the core version of SNOMED CT. In particular, we are inter-
ested in computing modules and uniform interpolants for smaller sets of concept
names and role names. We first consider three different ontology modules and
then analyse the relation among these modules. Then we give a brief overview of
uniform interpolation/forgetting techniques and show the correctness of the op-
timization: speed up the forgetting process by precomputing ontology modules.
We follow by proposing a signature extension method in SNOMED CT ontol-
ogy. Our preliminary evaluation shows that precomputing subsumption modules
significantly improves the performance of forgetting tools. Finally, we analyze
the reasons why ontology modules can help optimize forgetting process.

2 Preliminaries

We start by recalling the definition of the description logic EL [2] and several of
its extensions.

Let NC and NR be mutually disjoint and countably infinite sets of concept
names and role names. The signature sig(ξ) is the set of concept and role
names occurring in ξ, where ξ ranges over any syntactic object. The sets of
EL-concepts C, ELI-concepts D, and the sets of ELH-axioms α, ELI-axioms β
are built according to the grammar rules:

C ::= A | C u C | ∃r.C
D ::= A | C uD | ∃r.D | ∃r−.D

α ::= C v C | C ≡ C | r v s
β ::= D v D | D ≡ D

where A ∈ NC and r, s ∈ NR. An ELH(ELI)-TBox is a finite set of ELH(ELI)-
axioms. A concept definition is an axiom of the form C ≡ C or D ≡ D.

The semantics is defined as usual in terms of interpretations interpreting
concept/role names and are then inductively extended to complex concepts.
The notions of a model, satisfaction of a concept, axiom and TBox as well as
the logical consequence relation are defined as usual; see, e.g., [3].

A terminology T is a TBox consisting of axioms such that the left-hand side
of an axiom has to be a concept name, and no concept name occurs more than
once on the left-hand side of an axiom.

An EL-terminology T is normalised iff it only contains axioms of the forms
A v B, A v ∃r.C , ∃r.C v A and r v s, where A,B ∈ NC, r ∈ NR and C is an
EL concept.

For two general Tboxes T1 and T2, we say T1 and T2 are Σ-inseparable,
denoted as T1 ≡Σ T2 if {I|Σ | I |= T1}= {I|Σ | I |= T2} [10].



3 Computing Ontology Modules

In this section, we consider three different module notions: locality-based mod-
ules [8], MEX-modules [10], and minimal subsumption modules [6, 7].

Locality-based Module. There exists three different types of syntactic locality-
based modules, i.e., bottom (⊥), top (>) and star (?) modules. The latter com-
bines the two former notions by iterative and exhaustive application.

MEX-Module. A MEX-module is a module extracted by the tool MEX for
acyclic ELI-terminologies. Intuitively, once removing the depleting module from
an ontology, the remaining ontology states nothing about the signature and the
symbols that are contained in the depleting module. A self-contained module
is a sub-ontology that cannot be distinguished from the original ontology w.r.t.
the signature and symbols in the module.

Definition 1 (Self-contained/Depleting Modules [10]). Let T be an TBox
and Σ a signature. Then M⊆ T is

– a self-contained Σ-module of T if M≡Σ∪sig(M) T ;
– a depleting Σ-module of T if T \M ≡Σ∪sig(M) ∅.

In case of acyclic ELI-terminology T , self-contained module and depleting
module coincide, if T does not contain trivial concept definitions (cf. The-
orem 29 [10]). So, a MEX-module is a minimal depleting module and self-
contained module for acyclic ELI-terminologies.

Minimal Subsumption Module. A subsumption module is a subset of an
ontology that preserves subsumption queries that a user is interested in.

Definition 2 (Subsumption Module [7]). Let T be an ELH-terminology and
let Σ be a signature. A subset M ⊆ T is called an ELH-subsumption module
of T w.r.t. Σ iff for all ELH-inclusions α with sig(α) ⊆ Σ it holds that T |= α
iff M |= α. M is called a minimal subsumption module of T w.r.t. Σ iff for
any M′ (M, M′ is not a subsumption module of T w.r.t. Σ.

The following example with SNOMED CT shows the difference between
the three different module notions. To simplify the presentation, we use A1

to denote Neoplasm uncertain whether benign or malignant, A2 to denote Com-
plex mixed AND/OR stromal neoplasm, A to denote Mesoblastic nephroma, B to
denote Neoplasm, X to denote Neoplasm and/or hamartoma and Y to denote
Tumor.

Example 1. Let Σ = {A,B} and T = {α1, α2, α3, α4}, where α1 : A v A1 uA2,
α2 : A1 v B, α3 : A2 v B and α4 : B v X. There are two subsumption modules
of T w.r.t. Σ: {α1, α2} and {α1, α3}. Either {α1, α2} or {α1, α3} is sufficient to
preserve the entailment A v B that only uses symbols in Σ. The MEX-module
and STAR-module of T w.r.t. Σ are each {α1, α2, α3}.



For T ′ = {α1, α2, α3, α5} with α5 := B ≡ Y ,4 the STAR-module w.r.t. Σ
is T ′ itself. However, the minimal subsumption modules and MEX-module of T ′
w.r.t. Σ coincide with corresponding those of T , respectively.

As mentioned in [10], the MEX-module of an ELI-terminology w.r.t. Σ is
always a subset of the respective STAR-module w.r.t. Σ. A STAR-module coin-
cides with a MEX-module when the terminology contains no concept definitions
(cf. Proposition 38 in [10]). Different to the notion of an MEX-module, which is
defined in terms of the model-theoretic inseparability relation, the notion of a
subsumption module is defined in terms of entailment queries. It is shown that
a minimal subsumption module is contained in the respective MEX-module [4].
Hence, we can get the following proposition.

Proposition 1. Let T be an EL-terminology5 and Σ a signature. Additionally,
let M? and MM be the STAR-module and the MEX-module of T w.r.t. Σ,
respectively. Let MS be a minimal subsumption module of T w.r.t. Σ. Then:
MS ⊆MM ⊆M?.

Note that both module notions, MEX-modules and STAR-modules, each
yield a unique subset of a given TBox w.r.t. a signature. On the other hand, there
might exist several or even exponentially many minimal subsumption modules
of T for a signature (cf. Example 6 in [7]).

There are two approaches for computing minimal subsumption modules: the
glass-box and the black-box approach. In the glass-box approach, minimal sub-
sumption modules are directly computed by combining subsumption justifica-
tions for every concept name in the signature [5]. The black-box approach uses a
tool for detecting logical differences (e.g., CEX [9]) and computes the set of those
axioms whose removal causes a logical difference w.r.t. the original ontology [6,7].

4 Computing Uniform Interpolants

The task of forgetting symbols from an ontology is also known as uniform inter-
polation. It can be used to reduce the amount of symbols in an ontology or hide
certain confidential symbols without changing the meaning of the remaining sym-
bols in the ontology. LETHE [13] and FAME [29] are two advanced tools for for-
getting. While LETHE implements a resolution-based approach, FAME employs
the Ackermann lemma [1] to perform the inferences during forgetting [27, 30].
We now give a formal definition of uniform interpolation.

Definition 3 (Uniform Interpolation). Let T be an EL-terminology and Σ
a signature. U is a uniform interpolant of T w.r.t. Σ if the following conditions
are satisfied:

4 Neoplasm (B) and Tumor (Y ) are treated as synonyms in SNOMED CT and they
share the same identifier. In order to illustrate the difference between MEX-module
and STAR-module, we add α5 in this example.

5 Since MEX works for ELI-terminologies and minimal subsumption modules are
restricted to ELH-terminologies, we consider EL-terminologies here.



– sig(U) ⊆ Σ;
– for every EL-axiom α where sig(α) ⊆ Σ, T |= α iff U |= α.

As computing uniform interpolants is a difficult task especially for large-
scale ontologies, the size and complexity of the input ontology influences the
computation time directly. Instead of computing uniform interpolants on the
whole ontology, we may be able to speed up the computation by computing
uniform interpolants on ontology modules instead. The following proposition
guarantees the correctness of this approach.

Proposition 2. Let T be an EL-TBox and Σ a signature. of T w.r.t. Σ. If U
is a uniform interpolant of MS(MM or M?) w.r.t. Σ, then U is a uniform
interpolant of T w.r.t. Σ.

From Definition 2 and Definition 3, we can see that if U is a uniform in-
terpolant of MS w.r.t. Σ, then U is a uniform interpolant of T w.r.t. Σ. As
MS ⊆ MM by Proposition 1, we have that for every α where sig(α) ⊆ Σ, if
MS |= α, then MM |= α. Therefore, if U is a uniform interpolant of MS , then
U is also a uniform interpolant ofMM . Similarly, we have that if U is a uniform
interpolant of MS , then U is a uniform interpolant of M?.

5 Evaluation

We have evaluated the performance of the module extraction and forgetting tool
on SNOMED CT. Considering that MEX only works on ELI-terminologies and
the module extraction tool of minimal subsumption module works on ELHr-
terminologies, we choose to do the evaluation on an EL-terminology fragment of
SNOMED CT (version Jan 2016).6 All the experiments were conducted on the
machines equipped with Intel(R) Xeon(R) CPU E5-2640 v3 running at 2.60GHz
and with 32GB RAM. The execution timeout was 1 hour. The forgetting tools
we used in this experiment were FAME7 and LETHE.8

5.1 Signature Extension

For the evaluation, we used the European Renal Association (ERA) subset of
symbols from SNOMED CT which has been provided by IHTSDO (SNOMED
International). The ERA-subset contains a list of primary renal diseases, which
is designed specifically for use in renal centres and registries [23].

Previous evaluation of modularisation and forgetting tools on SNOMED CT
typically involved computing random signatures, genuine seed signatures [24], or
directly used SNOMED CT subsets [10]. However, these signatures do not prop-
erly reflect real-world scenarios of how users or developers would use ontology
modules or uniform interpolants of the SNOMED CT ontology.

6 EL-terminology fragment is obtained by removing the axioms that are beyond EL
profile. SNOMED CT (version Jan 2016) is a terminology itself.

7 http://www.cs.man.ac.uk/~schmidt/sf-fame/
8 http://www.cs.man.ac.uk/~koopmanp/lethe/



#NC #NR #M? #MM #MS

ΣT 152 0 2078 861 152

Σ+
0 / Σ+

1 275 0 2078 861 391

Σ+
2 369 10 2078 862 532

Table 1. Results of signature extension, size of different modules for extended signature
and time for computing uniform interpolants

For example, the ERA-subset only contains a list of renal disorders. In order
to relate symbols in the ERA-subset with symbols representing diseases, body
structure, role names, etc., it is necessary to extend the signature. Intuitively,
one could simply extend a signature based on the axioms in SNOMED CT.
However, in practice the issue arises as to which axioms to choose and how
much a signature should be extended. Based on discussion with developers from
IHTSDO, we propose Algorithm 1 to extend a signature. In this algorithm, the
function role depth() for EL-concepts is recursively defined as follows:

role depth(C) :=


0 C ∈ NC;

max(role depth(D), role depth(E)) C = D u E;

1 + role depth(D) C = ∃r.D.

In version Jan 2016 of SNOMED CT, the deepest role depth of any complex
concept is 2.

Algorithm 1 extends the original signature Σ in three different ways. Briefly
speaking, for every concept name A ∈ ΣT , Σ+

i includes all A’s direct supercon-
cepts C where role depth of C is less than i, where 0 ≤ i ≤ 2.

As we can see in Table 1, the size of signature increases from 152 (|ΣT |)
to 275 (|ΣT0 |). However, neither a concept name nor a role name was added
when extended signature from ΣT0 to ΣT1 . Another 10 role names and 94 con-

Algorithm 1 Signature-Extension(T , Σ)

Input: Normalised Terminology T , Signature Σ

Output: Σ+
0 , Σ+

1 , Σ+
2

1: ΣT := Σ ∩ sig(T ) ∩ NC

2: Σ+
0 := Σ+

1 := Σ+
2 := ΣT

3: for A v C ∈ T with A ∈ ΣT do

4: if C ∈ NC then

5: Σ+
0 := Σ+

0 ∪ {C}
6: if role depth(C) = 1 then

7: Σ+
1 := Σ+

1 ∪ sig(C)

8: if role depth(C) = 2 then

9: Σ+
2 := Σ+

2 ∪ sig(C)



Tool FAME LETHE

T M? MM MS M? MM MS

Min. 0.25 0.22 0.22 0.55 0.39 0.47
Max. 7.70 871.00 2.00 0.55 0.81 2.60
Avg. 2.20 387.00 0.41 0.55 0.56 0.83
Med. 0.36 306.00 0.26 0.55 0.56 0.62
Succ. 4/14 11/14 13/14 1/14 12/14 14/14

Table 2. Computation time (s) of uniform interpolants on different modules by FAME
and LETHE using 14 signatures

cept names were further included in ΣT2 . About the size of modules, the size of
STAR-modules stays the same. This is due to the fact that the signature is ex-
tended when computing STAR-modules. The size of MEX-module stays almost
the same. But the signature extension causes an impact on the size of minimal
subsumption modules.

5.2 Signature Partition

The second experiment is designed to mimic the scenario where a user queries
the ontology. In this case, only a rather small number of closely related con-
cept and role names are expected to be contained in the signature. To obtain
such small signatures, we devised Algorithm 2 performing signature partitioning.
Function ExtractStarModule(Σ, T ) in Line 1 is provided by the OWL API9 for
computing STAR-modules. Even though the function accepts general TBoxes T
formulated in OWL2, we only use it as a convenient way to compute the mod-
ule M? of SNOMED CT for the ERA concept names as a signature. The func-
tion Classify(M?) in Line 2 then calls the reasoner ELK10 to classify M?. In a
subsequent step, we reduce the computed class hierarchy to the symbols in the
input signature. We obtain a classification H′ of the ERA concept names. The
method Partition(M?) in Line 3 involved user interaction at the time of its con-
ceptualisation. Later it became clear that this step could also be automated. We
first display H′ using an ontology visualisation tool, e.g., WebVOWL.11 Then
we partition H′ by identifying different sets H′i of concept inclusions such that
every pair of concept names from the same set H′i are connected via a chain
of concept inclusions from H′i, and every pair of concept names taken from dif-
ferent sets H′i and H′j with i 6= j are not connected in this sense. This results
in 14 disjoint sub-hierarchies: H′1,H′2, ...,H′14. The loop from Line 4 to 6, first
computes the signature Σi of hierarchy H′i and then extends Σi to Σ+

i using
function Signature-Extension(M?, Σi) presented in Algorithm 2. The resulting
14 signatures consist of 5 to 40 concept names and 0 to 8 role names.

9 http://owlapi.sourceforge.net/
10 https://www.cs.ox.ac.uk/isg/tools/ELK/
11 http://vowl.visualdataweb.org/webvowl.html



Algorithm 2 Signature-Partitioning(T , Σ)

Input: Terminology T , Signature Σ (ERA subset)

Output: extended signatures Σ+
1 , ..., Σ

+
n

1: M? := ExtractStarModule(Σ, T )

2: H′ := Reduce(Σ,Classify(M?))

3: 〈H′1, ...,H′n〉 := Partition(H′)
4: for i ∈ {1, ..., n} do

5: Σi := sig(H′i)
6: Σ+

i := Signature-Extension(M?, Σi)

For each of the 14 signatures, we computed three different types of modules
of SNOMED CT: STAR-module, MEX-module and the minimal subsumption
modules. These modules together with their respective producing signatures were
then taken as input for the systems FAME and LETHE to compute uniform
interpolants. The resulting computation times are summarised in Table 2 in
terms of the mininal, maximal, average, and median time taken to compute a
uniform interpolant. Only the successful cases that finished within a timeout of
1 hour were counted. For example, the min/max/avg/med values in Column 5
are the same since LETHE managed to compute a uniform interpolant for only
one out of 14 signatures.

It becomes evident in Table 2 that precomputing MEX-modules and mini-
mal subsumption modules significantly reduces the computation time and, thus,
increases the success rate of computing uniform interpolants for both tools to
more than 90%. In particular in the case of minimal subsumption modules, the
uniform interpolant for any signature can be computed within 2.6 seconds by
LETHE. Contrast this with the fact that LETHE takes for all but one signature
more than one hour when using STAR-modules as an input.

However, we need to keep in mind that computing minimal subsumption
modules can be computationally expensive as well. The time needed to compute
the minimal subsumption modules for the 14 signatures ranged from 1 to 939 sec-
onds. The alternative seems to be the use of MEX-modules as they can be com-
puted even more efficiently. On the other hand, not all MEX-modules reduced
the computation time for uniform interpolants to less than one hour, cf. Table 2.
Hence, depending on the timeout constraint, the use of minimal subsumption
modules can enable the computation of uniform interpolants.

Table 6 shows the size of uniform interpolants for three different types of
modules w.r.t. the signatures for which all uniform interpolants can be success-
fully computed. In general, the uniform interpolants for the different modules
are rather similar in size.



#sigNC
(M?) #sigNC

(MM ) #sigNC
(MS)

Min. 7 6 6
Max. 319 172 95
Avg. 97.9 47.1 24.4
Med. 96 41 14.5

Table 3. Number of concept names in
different modules

#sigNR
(M?) #sigNR

(MM ) #sigNR
(MS)

Min. 0 0 0
Max. 17 15 8
Avg. 5 4 3.5
Med. 4 3.5 3.5

Table 4. Number of role names in dif-
ferent modules

#M? #MM #MS

Min. 6 2 2
Max. 304 158 64
Avg. 92.7 41.8 14.8
Med. 91 38 6.5

Table 5. Number of axioms in different
modules

#U(M?) #U(MM ) #U(MS)

Min. 6 5 5
Max. 14 25 37
Avg. 10.5 11.7 12.7
Med. 11 11 9

Table 6. Number of axioms in uniform
interpolant for different modules

6 Discussion

The results in Section 5 show that precomputing minimal subsumption modules
and MEX-modules can significantly speed up the process of computing uniform
interpolants. In this section, we analyse the reasons why module extraction tech-
niques can help to approximate forgetting tools.

Smaller module. Table 5 shows that, on average, the size of minimal sub-
sumption modules is almost 2 times smaller than MEX-modules, and 5 times
smaller than STAR-modules (even 13 times smaller than STAR-module accord-
ing to median value). Example 1 illustrates why minimal subsumption modules
are smaller than MEX-modules and STAR-modules.

Fewer symbols to forget. As we can see from Table 3, the number of con-
cept names that occur in minimal subsumption modules is 53% less than MEX-
modules and almost 3 times less than STAR-modules. As the interpolation sig-
nature is the same for all modules, forgetting on subsumption modules has much
fewer concept names to forget, the same as MEX-modules. Although forgetting
role names is more difficult than forgetting concept names, the number of role
names does not vary much on average for the different modules, cf. Table 4.

Special role “RoleGroup”. In SNOMED CT, a special role name, called
“RoleGroup”, maintains correct inferences and semantic meaning for complex
concept expressions that relate to, e.g., multiple sites and morphologies [22].

In our preliminary research, it is found that the presence of “RoleGroup”
makes the forgetting problem harder. However, inspection has revealed that
“RoleGroup” is occurred less frequently in minimal subsumption modules.

Influence of new types of axiom. Although precomputing MEX-modules
and minimal subsumption modules can remarkably speed up the forgetting pro-
cess, these techniques apply to terminologies with few operators.



#(r v s) #(C v A) #(r ◦ s v r) #r− #r+ #Diff(H,HELH) #Diff(H,HEL)

123 20 5 4 2 2558 25973

Table 7. Classification result on EL,ELH and whole SNOMED CT

The latest version of SNOMED CT (Version Jan 2019) included new types
of axioms compared with Version Jan 2016, which is beyond ELH-terminologies.
That is, property chain of the form r ◦ s v r, reflexive property(r−), transitive
property(r+), concept inclusion where the left-hand side is a complex concept.
Another type of axiom we also have to consider is property inclusion that MEX
cannot deal with.

With the purpose of figuring out how these axioms influence the subsump-
tion result in SNOMED CT, we conducted the following experiment. First, we
got the ELH-Terminology fragment of SNOMED CT (Version Jan 2019), de-
noted as TELH, by removing axioms of property chain, reflexive property, tran-
sitive property and subClass axioms in the form of C v A. The EL-fragment of
SNOMED CT, denoted as TEL, is extracted by further removing property inclu-
sion from TELH. We then employed the ELK reasoner to classify on the original
SNOMED CT, TEL, HELH and get classification ontologies O, OELH and OEL.
The function Diff(H,H′) compares the set difference between two classified on-
tologies. As shown in Table 7, the entailment difference between H and HEL is
25973. There is around 2500 entailments difference between H and HELH. This
means role inclusions do have a considerable effect on SNOMED CT. Although
MEX is very efficient at extracting modules, MEX-modules are likely to lose
some relevant information about the signature when extracting modules only
on EL-fragment of SNOMED CT, similar as extracting minimal subsumption
modules just on ELH-fragment of SNOMED CT.

7 Conclusion and Future Work

In this paper, we first briefly described current techniques on ontology modu-
larization and uniform interpolation. We provided the preliminary evaluation of
current techniques on comprehensive medical ontology SNOMED CT for a set
of meaningful signatures in practice. In future, we plan to further investigate
the performance of these techniques on real-world signatures. We also expect
to evaluate the quality of modules and uniform interpolants we obtained with
the developers of SNOMED CT and, ideally, also with doctors and nurses. For
better use of current module extraction and uniform interpolation techniques in
real-world situation, we will update current module/UI techniques according to
feedback from SNOMED CT developers. Besides, the algorithm for computing
minimal subsumption modules is also expected to be updated in order to deal
with logic profiles that are outside its current scope.
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