On the Data Complexity of Ontology-Mediated Queries with a Covering Axiom

O. Gerasimova ${ }^{1}$, S. Kikot 2, V. Podolskii ${ }^{3,1}$, and M. Zakharyaschev ${ }^{2}$
${ }^{1}$ National Research University Higher School of Economics, Moscow, Russia
${ }^{2}$ Birkbeck, University of London, U.K.
${ }^{3}$ Steklov Mathematical Institute, Moscow, Russia

Abstract

This paper reports on our ongoing work that aims at a classification of conjunctive queries \boldsymbol{q} according to the data complexity of answering ontologymediated queries $(\{A \sqsubseteq T \sqcup F\}, \boldsymbol{q})$. We give examples of queries from the complexity classes $\mathfrak{C} \in\left\{\mathrm{AC}^{0}, \mathrm{~L}, \mathrm{NL}, \mathrm{P}, \mathrm{CONP}\right\}$, and obtain a few syntactical conditions for \mathfrak{C}-membership and \mathfrak{C}-hardness.

1 Introduction

The OWL 2 QL profile of OWL 2-as well as the underlining description logics from the DL-Lite family [4, 2]-were designed to ensure that every ontology-mediated query (OMQ, for short) $(\mathcal{T}, \boldsymbol{q})$ with an $O W L 2 Q L$ ontology \mathcal{T} and a conjunctive query (CQ) \boldsymbol{q} is first-order (FO) rewritable. However, when developing ontologies for ontologybased data access (OBDA) [10] applications, domain experts are often tempted to use axioms with constructs that are not available in OWL 2 QL. For example, the NPD FactPages ontology, ${ }^{4}$ which was created to facilitate querying the datasets of the Norwegian Petroleum Directorate, ${ }^{5}$ contains cardinality restrictions and covering axioms of the form $A \sqsubseteq B_{1} \sqcup \cdots \sqcup B_{n}$. Typical answers to the question whether such axioms could have a negative impact on OMQ rewriting are as follows: (i) the data satisfies the axioms anyway (because of the database schema), (ii) our 'real-world queries' are never affected by them, and (iii) OBDA systems such as Ontop drop everything outside OWL 2 QL. Ideally, of course, we would rather want our system to detect automatically whether the given OMQ is FO-rewritable and alert the user if this is not so. Furthermore, in case of non-FO-rewritability, we might want the system to check whether a datalog rewriting is possible, and so on. From the complexity-theoretic point of view, we are thus interested in the data complexity of answering a given OMQ with an expressive ontology.

A systematic investigation of this problem was started in [3], which showed among other results that answering OMQs of the form ($\left.\mathcal{D} i s_{n}, \boldsymbol{u}\right)$, where \boldsymbol{u} is a union of CQs (UCQ) and $\mathcal{D} i s_{n}=\left\{A \sqsubseteq B_{1} \sqcup \cdots \sqcup B_{n}\right\}$, is polynomially equivalent to the constraint satisfaction problems $\operatorname{CSP}(\mathfrak{A})$. In particular, a P/CONP dichotomy for such OMQs would give a dichotomy for CSPs, thereby confirming the Feder-Vardi conjecture. As

[^0]shown in [7], answering CQs with basic schema.org ontologies (in particular, $\mathcal{D} i s_{n}$) and CQs of qvar-size ≤ 2 is in P for combined complexity, where \boldsymbol{q} is of quar-size n if the restriction of \boldsymbol{q} to its quantified variables is a disjoint union of CQs with at most n variables each. Moreover, FO- and datalog-rewritability of OMQs of the form $(\mathcal{T}, \boldsymbol{u})$, where \mathcal{T} is a schema.org ontology and \boldsymbol{u} is a UCQ, are decidable in NEXPTIME. It has also been recently established in [5] that checking FO-rewritability of OMQs with ontologies formulated in any description logic between $\mathcal{A L C \mathcal { I }}$ and $\mathcal{S H}$ is 2NEXPTimecomplete. Datalog rewritability of OMQs with ontologies given in disjunctive datalog has been investigated in [8].

In this paper, we consider one fixed non-Horn ontology $\mathcal{D} i s=\{A \sqsubseteq T \sqcup F\}$. Ultimately aiming at a complete classification of CQs \boldsymbol{q} according to the data complexity of answering OMQs $\boldsymbol{Q}=(\mathcal{D} i s, \boldsymbol{q})$, here we present our initial observations about this problem. Ideally, we would like to obtain transparent necessary and sufficient conditions relating the structure of \boldsymbol{q}-say, the way how T and F occur in it-with the complexity of answering \boldsymbol{Q}. For example, one such condition guaranteeing datalog rewritability, and so tractability of answering \boldsymbol{Q} follows from [8, Theorem 27]: it suffices that \boldsymbol{q} contains at most one occurrence of F or at most one occurrence of T. We obtain a few conditions in the same spirit for the complexity classes $\mathrm{AC}^{0}, \mathrm{~L}, \mathrm{NL}$ and P . We also give quite a few simple and instructive CQs distinguishing between NL and P, and develop techniques for establishing P and coNP lower bounds.

2 Preliminaries

In our context, a conjunctive query ($C Q$) is a first-order (FO) formula of the form $\boldsymbol{q}(\boldsymbol{x})=\exists \boldsymbol{y} \varphi(\boldsymbol{x}, \boldsymbol{y})$, where φ is a conjunction of unary or binary atoms $P(\boldsymbol{z})$ with $\boldsymbol{z} \subseteq \boldsymbol{x} \cup \boldsymbol{y}$.Unions of conjunctive queries $(U C Q)$ is a disjunction of conjunctive queries. Given an ABox (or data instance) \mathcal{A}, we denote by ind (\mathcal{A}) the set of individual names that occur in \mathcal{A}. A tuple $\boldsymbol{a} \subseteq \operatorname{ind}(\mathcal{A})$ is a certain answer to the OMQ $\boldsymbol{Q}=(\mathcal{D} i s, \boldsymbol{q}(\boldsymbol{x}))$ over \mathcal{A} if $\mathfrak{M} \vDash \boldsymbol{q}(\boldsymbol{a})$, for every model \mathfrak{M} of \mathcal{D} is $\cup \mathcal{A}$; in this case we write \mathcal{D} is, $\mathcal{A}=$ $\boldsymbol{q}(\boldsymbol{a})$. If the set \boldsymbol{x} of answer variables is empty, a certain answer to \boldsymbol{Q} over \mathcal{D} is 'yes' if $\mathfrak{M} \vDash \boldsymbol{q}$, for every model \mathfrak{M} of \mathcal{D} is $\cup \mathcal{A}$, and 'no' otherwise. OMQs and CQs without answer variables \boldsymbol{x} are called Boolean. We often regard CQs as sets of their atoms. In this paper, we assume that the all CQs are connected.

Let $\boldsymbol{Q}=(\mathcal{D} i s, \boldsymbol{q}(\boldsymbol{x}))$ be a fixed OMQ. By answering \boldsymbol{Q}, we understand the problem of checking, given an ABox \mathcal{A} and a tuple $\boldsymbol{a} \subseteq \operatorname{ind}(\mathcal{A})$, whether $\mathcal{D} i s, \mathcal{A} \models \boldsymbol{q}(\boldsymbol{a})$. It is readily seen that this problem is always in CoNP. It is in the complexity class AC^{0} if there is an FO-formula $\boldsymbol{q}^{\prime}(\boldsymbol{x})$, called an $F O$-rewriting of \boldsymbol{Q}, such that \mathcal{D} is, $\mathcal{A} \models \boldsymbol{q}(\boldsymbol{a})$ iff $\boldsymbol{q}^{\prime}(\boldsymbol{a})$ holds in the model given by \mathcal{A}, for any $\operatorname{ABox} \mathcal{A}$ and any tuple $\boldsymbol{a} \subseteq \operatorname{ind}(\mathcal{A})$.

A datalog program, Π, is a finite set of rules of the form $\forall \boldsymbol{z}\left(\gamma_{0} \leftarrow \gamma_{1} \wedge \cdots \wedge \gamma_{m}\right)$, where each γ_{i} is an atom $Q(\boldsymbol{y})$ with $\boldsymbol{y} \subseteq \boldsymbol{z}$ or an equality $\left(z=z^{\prime}\right)$ with $z, z^{\prime} \in \boldsymbol{z}$. (As usual, we omit $\forall \boldsymbol{z}$.) The atom γ_{0} is the head of the rule, and $\gamma_{1}, \ldots, \gamma_{m}$ its body. All variables in the head must occur in the body, and = can only occur in the body. The predicates in the heads of rules in Π are $I D B$ predicates, the rest (including $=$) $E D B$ predicates. A program Π is called linear if the body of every rule in Π contains at most one IDB predicate.

A datalog query is a pair $(\Pi, G(\boldsymbol{x}))$, where Π is a datalog program and $G(\boldsymbol{x})$ an atom. A tuple $\boldsymbol{a} \subseteq \operatorname{ind}(\mathcal{A})$ is an answer to $(\Pi, G(\boldsymbol{x}))$ over an ABox \mathcal{A} if $G(\boldsymbol{a})$ holds in the first-order structure with domain ind (\mathcal{A}) obtained by closing \mathcal{A} under the rules in Π; in this case we write $\Pi, \mathcal{A} \models G(\boldsymbol{a})$. A datalog query $(\Pi, G(\boldsymbol{x}))$ is a datalog rewriting of an OMQ $\boldsymbol{Q}=(\mathcal{D} i s, \boldsymbol{q}(\boldsymbol{x}))$ in case $\mathcal{D} i s, \mathcal{A} \models \boldsymbol{q}(\boldsymbol{a})$ iff $\Pi, \mathcal{A} \models G(\boldsymbol{a})$, for any ABox \mathcal{A} and any $\boldsymbol{a} \subseteq \operatorname{ind}(\mathcal{A})$. The evaluation problem for $(\Pi, G(\boldsymbol{x}))$-that is, checking, given an ABox \mathcal{A} and a tuple $\boldsymbol{a} \subseteq \operatorname{ind}(\mathcal{A})$, whether $\Pi, \mathcal{A} \models G(\boldsymbol{a})$-is known to be in P ; for linear Π, this problem is in NL; see [6] and references therein.

$3 \mathrm{AC}^{0}$

By a solitary occurrence of F in a CQ \boldsymbol{q} we mean any $F(x) \in \boldsymbol{q}$ such that $T(x) \notin \boldsymbol{q}$; likewise, a solitary occurrence of T in \boldsymbol{q} is any $T(x) \in \boldsymbol{q}$ such that $F(x) \notin \boldsymbol{q}$.

Theorem 1. For any CQ \boldsymbol{q} without solitary occurrences of F (or T), answering the $O M Q \boldsymbol{Q}=(\mathcal{D} i s, \boldsymbol{q})$ is in AC^{0}.

Proof. We show that $\mathcal{D i s}, \mathcal{A} \vDash \boldsymbol{q}(\boldsymbol{a})$ iff $\mathcal{A} \vDash \boldsymbol{q}(\boldsymbol{a})$. Suppose that $\mathcal{A} \not \vDash \boldsymbol{q}(\boldsymbol{a})$ and $F(x) \in \boldsymbol{q} \Rightarrow T(x) \in \boldsymbol{q}$. Take $\mathcal{A}^{\prime}=\mathcal{A} \cup\{F(a) \mid a \in \operatorname{ind}(\mathcal{A}) \wedge T(a) \notin \mathcal{A}\}$. Clearly, $\mathcal{A}^{\prime} \models \mathcal{D}$ is and $\mathcal{A}^{\prime} \notin \boldsymbol{q}(\boldsymbol{a})$. The converse direction is trivial.

In particular, answering any OMQ $\boldsymbol{Q}=(\mathcal{D} i s, \boldsymbol{q})$, where \boldsymbol{q} does not contain one of F or T, is in AC^{0}. This observation can be easily generalised to OMQs with ontologies $\mathcal{D} i s_{n}=\left\{A \sqsubseteq B_{1} \sqcup \cdots \sqcup B_{n}\right\}$, for $n \geq 2$:

Theorem 2. Suppose \boldsymbol{q} is any $C Q$ that does not contain an occurrence of B_{i}, for some $i(1 \leq i \leq n)$. Then answering the $O M Q \boldsymbol{Q}=\left(\mathcal{D} i s_{n}, \boldsymbol{q}\right)$ is in AC^{0}.

Thus, only those CQs can 'feel' $\mathcal{D} i s_{n}$ as far as FO-rewritability is concerned that contain all the B_{n} (which makes them quite complex in practice). Theorem 1 also shows that $\boldsymbol{Q}=(\mathcal{D} i s, \boldsymbol{q})$ satisfying the respective condition has a trivial FO-rewriting, viz. \boldsymbol{q} itself. This is not accidental as shown by the following observation:

Proposition 1. If $\boldsymbol{Q}=(\mathcal{D}$ is, $\boldsymbol{q})$ is in AC^{0}, then \boldsymbol{q} is a rewriting of \boldsymbol{Q}.
Proof. By [3, Proposition 5.9], if Q is FO-rewritable, it has a UCQ rewriting. Then there is a homomorphism from \boldsymbol{q} to any $\mathrm{CQ} \boldsymbol{q}^{\prime}$ in this rewriting.

We do not know yet whether the sufficient condition for FO-rewritability given by Theorem 1 is also a necessary one for minimal CQs \boldsymbol{q} (that are not equivalent to any of their proper subqueries). For non-minimal CQs, this is not the case as shown
 $\circ \underset{R}{\longrightarrow} F T \underset{R}{\stackrel{ }{\longleftrightarrow}}$. Below we obtain some partial results showing how a single F-atom and a single T-atom in \boldsymbol{q} can cause L- and NL-hardness.

4 L and NL

We say that a Boolean CQ \boldsymbol{q} is an $F-T-C Q$ if it has exactly one atom of the form $F(x)$, exactly one atom of the form $T(y)$, and the variables x and y are distinct.

Theorem 3. Answering any $O M Q \boldsymbol{Q}=(\mathcal{D} i s, \boldsymbol{q})$ with an $F-T-C Q \boldsymbol{q}$ is L-hard.
Proof. The proof is by reduction to the reachability problem for undirected graphs, which is known to be L-complete; see, e.g., [1]. Let \boldsymbol{q}^{\prime} be the CQ obtained from \boldsymbol{q} by removing the atoms $F(x)$ and $T(y)$. Suppose we are given an undirected graph $G=(V, E)$ and two vertices $s, t \in V$. It will be convenient to regard G as a directed graph such that $(u, v) \in E$ iff $(v, u) \in E$, for any $u, v \in V$. We encode G by means of an ABox \mathcal{A}_{G} that is obtained from G as follows. For every edge $e=(u, v) \in E$, let $\boldsymbol{q}_{e}^{\prime}$ be the set of atoms in \boldsymbol{q}^{\prime} with x renamed to u, y to v and all other variables z to z_{e}. Then \mathcal{A}_{G} comprises all such \boldsymbol{q}_{e}, for $e \in E$, as well as $F(s), T(t)$ and $A(v)$, for $v \in V \backslash\{s, t\}$. Our aim is to show that $s \rightarrow_{G} t$ iff $\mathcal{D} i s, \mathcal{A}_{G} \models \boldsymbol{q}$.

Suppose $s \rightarrow_{G} t$, that is, there exists a path $s=v_{0}, v_{1}, \ldots, v_{n}=t$ in G with $e_{i}=\left(v_{i}, v_{i+1}\right) \in E$, for $i<n$. Consider an arbitrary model \mathcal{I} of \mathcal{D} is and \mathcal{A}_{G}. Since $\mathcal{I} \models \mathcal{D} i s$ and $F(s), T(t), A\left(v_{i}\right)$, for $1 \leq i<n$, are all in \mathcal{A}_{G}, we can find some $i<n$ such that $\mathcal{I} \models F\left(v_{i}\right)$ and $\mathcal{I} \models T\left(v_{i+1}\right)$. As $\boldsymbol{q}_{e_{i}}^{\prime}$ is an isomorphic copy of \boldsymbol{q}^{\prime}, we obtain $\mathcal{I} \mid=\boldsymbol{q}$. Conversely, suppose $s \nrightarrow_{G} t$. Define an interpretation \mathcal{I} by extending the ABox \mathcal{A}_{G} with $F^{\mathcal{I}}=\left\{v \in V \mid s \rightarrow_{G} v\right\}$ and $T^{\mathcal{I}}=\left\{v \in V \mid s \nrightarrow_{G} v\right\}$. Clearly, \mathcal{I} is a model of $\mathcal{D} i s$. By the construction, the elements of the connected component of \mathcal{I} containing s cannot be instances of T, while the remaining elements of \mathcal{I} cannot be instances of F. Since \boldsymbol{q} is connected, it follows that $\mathcal{I} \not \vDash \boldsymbol{q}$.

We call a Boolean CQ \boldsymbol{q} linear-directed if all of its variables can be arranged in a sequence v_{0}, \ldots, v_{m} such that all binary predicates in \boldsymbol{q} are of the form $R\left(v_{i}, v_{i+1}\right)$, for some $i, 0 \leq i<m$.

Theorem 4. Answering any $O M Q \boldsymbol{Q}=(\mathcal{D} i s, \boldsymbol{q})$ with a linear-directed $C Q \boldsymbol{q}$ containing both a solitary F and a solitary T is NL-hard.

Proof. Suppose $F\left(v_{k}\right) \in \boldsymbol{q}, T\left(v_{k}\right) \notin \boldsymbol{q}$ and $F\left(v_{l}\right) \notin \boldsymbol{q}, T\left(v_{l}\right) \in \boldsymbol{q}$, for some k, l with $0 \leq k<l \leq m$. We rename the sequence v_{k}, \ldots, v_{l} to x_{0}, \ldots, x_{n}. The proof proceeds by reduction to the reachability problem in directed graphs, which is known to be NLcomplete; see, e.g., [1]. Given a directed graph $G=(V, E)$ and vertices $s, t \in V$, we construct the $\mathrm{ABox} \mathcal{A}_{G}$ in the same way as in the proof of Theorem 3 treating x_{0} as x and x_{n} as y. Again, we show that $s \rightarrow_{G} t$ iff $\mathcal{D} i s, \mathcal{A}_{G} \models \boldsymbol{q}$. The implication (\Rightarrow) is established exactly as above.

To prove (\Leftarrow), we assume that $s \nrightarrow_{G} t$ and consider the same model \mathcal{I} as defined in the proof of Theorem 3. Taking account of linear-directedness of \boldsymbol{q}, we immediately conclude that there is no homomorphism $h: \boldsymbol{q} \rightarrow \mathcal{I}$ with $h\left(x_{0}\right) \in V$. It remains to show that there is no homomorphism $h: \boldsymbol{q} \rightarrow \mathcal{I}$ with $h\left(x_{0}\right) \notin V$ either. Suppose to the contrary that such a homomorphism exists. Then there exist $B \in\{F, T\}$ and a homomorphism $f: \boldsymbol{q} \rightarrow\left(\mathcal{A}_{G_{2}} \cup\{B(r)\}\right)$, where $G_{2}=(\{s, r, t\},\{(s, r),(r, t)\})$. We denote the points of $\mathcal{A}_{G_{2}}$ between s and r by $x_{0}, x_{1}, \ldots, x_{n}$ and those between r and
t by $x_{n}, x_{1}^{\prime}, \ldots, x_{n}^{\prime}$. By comparing the lengths of appropriate segments of \boldsymbol{q}, we obtain $f\left(x_{0}\right)=x_{i}$, for some $i(0<i<n)$. As $F\left(x_{0}\right) \in \boldsymbol{q}$, we must have $F\left(x_{i}\right) \in \boldsymbol{q}$; see the picture below. As $f\left(x_{i}\right)=x_{2 i}$ if $2 i \leq n$, and $f\left(x_{i}\right)=x_{2 i \bmod n}^{\prime}$ otherwise, we also have $F\left(x_{2 i} \bmod n\right) \in \boldsymbol{q}$; more generally, $F\left(x_{k i} \bmod n\right) \in \boldsymbol{q}$ for all natural k. Now, since the equation of the form ' $i X=n \bmod n$ ' always has a solution, $F\left(x_{n}\right) \in \boldsymbol{q}$, which is impossible if $B=T$. If $B=F$, we use a similar argument starting from $T\left(x_{i}\right) \in \boldsymbol{q}$ and show that $T\left(x_{n}\right) \in \boldsymbol{q}$, which is again a contradiction.

Theorems 1 and 4 give the following dichotomy for OMQs $\boldsymbol{Q}=(\mathcal{D} i s, \boldsymbol{q})$ with linear-directed CQs \boldsymbol{q} :

- either \boldsymbol{q} does not contain a solitary F or a solitary T, and answering \boldsymbol{Q} is in AC^{0},
- or \boldsymbol{q} contains both solitary F and T, and answering \boldsymbol{Q} is NL-hard.

We now complement the sufficient conditions of L- and NL-hardness obtained above with sufficient conditions of OMQ answering in L- and NL.

A CQ $\boldsymbol{q}^{\prime}(x, y)$ is symmetric if the CQs $\boldsymbol{q}^{\prime}(x, y)$ and $\boldsymbol{q}^{\prime}(y, x)$ are equivalent in the sense that $\boldsymbol{q}^{\prime}(a, b)$ holds in \mathcal{A} iff $\boldsymbol{q}^{\prime}(b, a)$ holds in \mathcal{A}, for any $\operatorname{ABox} \mathcal{A}$ and $a, b \in \operatorname{ind}(\mathcal{A})$.

Theorem 5. Let $\boldsymbol{Q}=(\mathcal{D} i s, \boldsymbol{q})$ be any OMQ such that

$$
\boldsymbol{q}=\exists x, y\left(F(x) \wedge \boldsymbol{q}_{1}^{\prime}(x) \wedge \boldsymbol{q}^{\prime}(x, y) \wedge \boldsymbol{q}_{2}^{\prime}(y) \wedge T(y)\right)
$$

for some connected CQs $\boldsymbol{q}^{\prime}(x, y), \boldsymbol{q}_{1}^{\prime}(x)$ and $\boldsymbol{q}_{2}^{\prime}(y)$ that do not contain solitary T and F, and $\boldsymbol{q}^{\prime}(x, y)$ is symmetric. Then answering \boldsymbol{Q} can be done in L .

Proof. It is not hard to show that, for any $\operatorname{ABox} \mathcal{A}$, we have $\mathcal{D} i s, \mathcal{A} \vDash \boldsymbol{q}$ iff there exist $v_{0}, v_{1}, \ldots, v_{n} \in \operatorname{ind}(\mathcal{A})$, for some $n \geq 1$, such that the following conditions hold:
$-F\left(v_{0}\right), A\left(v_{1}\right), \ldots, A\left(v_{n-1}\right), T\left(v_{n}\right) \in \mathcal{A} ;$
$-\mathcal{A}=\boldsymbol{q}^{\prime}\left(v_{i}, v_{i+1}\right)$ for $0 \leq i<n$;
$-\mathcal{A}=\boldsymbol{q}_{1}^{\prime}\left(v_{i}\right)$ for $0 \leq i<n$;
$-\mathcal{A}=\boldsymbol{q}_{2}^{\prime}\left(v_{i}\right)$ for $1 \leq i \leq n$.
It remains to observe that checking these conditions reduces to checking $V_{T}-V_{F}$ reachability in the undirected graph $G_{\mathcal{A}}=\left(V_{\mathcal{A}}, E_{\mathcal{A}}\right)$ defined below. The vertices in $G_{\mathcal{A}}$ comprise the set $V_{\mathcal{A}}=V_{T} \cup V_{A} \cup V_{F}$, where

- $V_{T}=\left\{v \in \operatorname{ind}(\mathcal{A}) \mid \mathcal{A}=T(v) \wedge \boldsymbol{q}_{2}^{\prime}(v)\right\} ;$
- $V_{A}=\left\{v \in \operatorname{ind}(\mathcal{A}) \mid \mathcal{A} \equiv A(v) \wedge \boldsymbol{q}_{1}^{\prime}(v) \wedge \boldsymbol{q}_{2}^{\prime}(v)\right\} ;$
- $V_{F}=\left\{v \in \operatorname{ind}(\mathcal{A}) \mid \mathcal{A} \models F(v) \wedge \boldsymbol{q}_{1}^{\prime}(v)\right\}$.

The edges in $G_{\mathcal{A}}$ comprise the set $E_{\mathcal{A}}=E_{T A} \cup E_{A A} \cup E_{F A}$, where

$$
-E_{\text {all }}=\left\{(x, y)|\mathcal{A}|=\boldsymbol{q}^{\prime}(x, y)\right\}
$$

- $E_{T A}=\left\{(x, y) \in E_{\text {all }} \mid\left(x \in V_{T} \wedge y \in V_{A}\right) \vee\left(y \in V_{T} \wedge x \in V_{A}\right)\right\} ;$
$-E_{A A}=\left\{(x, y) \in E_{\text {all }} \mid x \in V_{A} \wedge y \in V_{A}\right\}$;
- $E_{F A}=\left\{(x, y) \in E_{\text {all }} \mid\left(x \in V_{F} \wedge y \in V_{A}\right) \vee\left(y \in V_{F} \wedge x \in V_{A}\right)\right\}$.

It is readily seen that $G_{\mathcal{A}}=\left(V_{\mathcal{A}}, E_{\mathcal{A}}\right)$ is undirected in the sense that, for all of its vertices u and $v,(u, v) \in E_{\mathcal{A}}$ iff $(u, v) \in E_{\mathcal{A}}$.

If we do not require $\boldsymbol{q}^{\prime}(x, y)$ to be symmetric, the complexity upper bound increases to NL:

Theorem 6. Let $\boldsymbol{Q}=(\mathcal{D} i s, \boldsymbol{q})$ be any $O M Q$ such that

$$
\boldsymbol{q}=\exists x, y\left(F(x) \wedge T(y) \wedge \boldsymbol{q}^{\prime}(x, y)\right)
$$

for some connected CQ $\boldsymbol{q}^{\prime}(x, y)$ without solitary occurrences of F and T. Then answering \boldsymbol{Q} can be done in NL.
Proof. We claim that the datalog query (Π, G) with the following linear datalog program Π, where $\tilde{\boldsymbol{q}}^{\prime}$ is the result of omitting all the \exists from \boldsymbol{q}^{\prime} :

$$
\begin{aligned}
G & \leftarrow F(x) \wedge \tilde{\boldsymbol{q}}^{\prime}(x, y) \wedge P(y) \\
P(x) & \leftarrow T(x) \\
P(x) & \leftarrow A(x) \wedge \tilde{\boldsymbol{q}}^{\prime}(x, y) \wedge P(y)
\end{aligned}
$$

is a datalog rewriting of \boldsymbol{Q}. Indeed, if $\Pi, \mathcal{A} \models G$ then there are $v_{0}, v_{1}, \ldots, v_{n} \in \operatorname{ind}(\mathcal{A})$ such that $F\left(v_{0}\right), A\left(v_{1}\right), \ldots, A\left(v_{n-1}\right), T\left(v_{n}\right) \in \mathcal{A}$ and $\boldsymbol{q}^{\prime}\left(v_{i}, v_{i+1}\right)$ holds in \mathcal{A}, for $0 \leq i<n$. Clearly, in any model \mathcal{I} of $\mathcal{D} i s$ and \mathcal{A} there is i with $\mathcal{I} \models F\left(v_{i}\right) \wedge T\left(v_{i+1}\right)$. It follows that $\mathcal{D} i s, \mathcal{A} \vDash \boldsymbol{q}$.

Conversely, suppose $\Pi, \mathcal{A} \not \models G$. Let $V_{P}=\{v \in \operatorname{ind}(\mathcal{A}) \mid \Pi, \mathcal{A} \models P(v)\}$. Define a model \mathcal{I} of \mathcal{D} is with domain $\operatorname{ind}(\mathcal{A})$ by setting
$T^{\mathcal{I}}=\{v \mid T(v) \in \mathcal{A}\} \cup\left\{v \in V_{P} \mid A(v) \in \mathcal{A}\right\}, \quad F^{\mathcal{I}}=F^{\mathcal{A}} \cup\left\{v \notin V_{P} \mid A(v) \in \mathcal{A}\right\}$.
We claim that $\mathcal{I} \not \vDash \boldsymbol{q}$. Indeed, otherwise there is a homomorphism $h: \boldsymbol{q} \rightarrow \mathcal{I}$. As $h(y) \in T^{\mathcal{I}}$, we have $\Pi, \mathcal{A} \models P(h(y))$. As $h(x) \in F^{\mathcal{I}}$, we have either $F(h(x)) \in \mathcal{A}$ or $A(h(x)) \in \mathcal{A}$, contrary to $\Pi, \mathcal{A} \not \models G$.

The sufficient conditions of Theorems 5 and 6 only apply to CQs with exactly one solitary occurrence of F and exactly one solitary occurrence of T. What happens if we allow more than one solitary occurrences of F or T ?

5 P

The following result is a consequence of [8, Theorem 27]:
Theorem 7. Let $\boldsymbol{Q}=(\mathcal{D} i s, \boldsymbol{q})$ be any $O M Q$ such that

$$
\boldsymbol{q}=\exists x, y_{1}, \ldots, y_{n}\left(F(x) \wedge T\left(y_{1}\right) \wedge \cdots \wedge T\left(y_{n}\right) \wedge \boldsymbol{q}^{\prime}\left(x, y_{1}, \ldots, y_{n}\right)\right)
$$

for some connected $C Q \boldsymbol{q}^{\prime}\left(x, y_{1}, \ldots, y_{n}\right)$ without solitary occurrences of T and F. Then answering \boldsymbol{Q} can be done in P .

Indeed, for any $\operatorname{ABox} \mathcal{A}$, we have $\mathcal{D} i s, \mathcal{A} \models \boldsymbol{q}$ iff $\Pi, \mathcal{A} \models G$, where Π is the following datalog program and $\tilde{\boldsymbol{q}}^{\prime}$ is the result of omitting all the \exists from \boldsymbol{q}^{\prime} :

$$
\begin{aligned}
G & \leftarrow F(x) \wedge \tilde{\boldsymbol{q}}^{\prime}\left(x, y_{1}, \ldots, y_{n}\right) \wedge P\left(y_{1}\right) \wedge \cdots \wedge P\left(y_{n}\right) \\
P(x) & \leftarrow T(x) \\
P(x) & \leftarrow A(x) \wedge \tilde{\boldsymbol{q}}^{\prime}\left(x, y_{1}, \ldots, y_{n}\right) \wedge P\left(y_{1}\right) \wedge \cdots \wedge P\left(y_{n}\right) .
\end{aligned}
$$

Is the P-upper bound of Theorem 7 optimal? The following example gives a typical OMQ in the scope of that theorem answering which is P-hard.
Example 1. We show that $\boldsymbol{Q}=(\mathcal{D} i s, \boldsymbol{q})$ is P-hard for \boldsymbol{q} shown in the picture below.

The proof is by reduction of the alternating monotone circuit evaluation problem, which is known to be P-complete [9]. An example of an alternating monotone circuit is shown in the picture below. Given such a circuit \boldsymbol{C} and an input $\boldsymbol{\alpha}$, we define an $\operatorname{ABox} \mathcal{A}_{C}^{\boldsymbol{\alpha}}$ as the set of the following atoms:

- $R(g, h)$, if a gate g is an input of a gate h;
- $S(g, h)$, if g and h are distinct inputs of some AND-gate;
- $S(g, g)$, if g is an input gate or a non-output AND-gate;
- $T(g)$, if g is an input gate with 1 under $\boldsymbol{\alpha}$;
- $F(g)$, for the only output gate g;
- $A(g)$, for those g that are neither inputs nor the output.

To illustrate, the picture below shows an alternating monotone circuit \boldsymbol{C}, an input $\boldsymbol{\alpha}$ for it , and the $\mathrm{ABox} \mathcal{A}_{C}^{\alpha}$, where the solid arrows represent R and the dashed ones S :

One can show that $\boldsymbol{C}(\boldsymbol{\alpha})=1$ iff $\mathcal{D} i s, \mathcal{A}_{\boldsymbol{C}}^{\alpha} \models \boldsymbol{q}$.
Curiously, by changing S to R in the CQ from Example 1, we obtain an OMQ that is NL-complete as follows from Theorem 8 below.

6 NL vs. P

Theorem 8. Answering any OMQ $\boldsymbol{Q}=\left(\mathcal{D} i s, \boldsymbol{q}_{n}\right)$ with

$$
\boldsymbol{q}_{n}=\exists x_{1}, \ldots, x_{n}, y \bigwedge_{i=1}^{n-1}\left(T\left(x_{i}\right) \wedge R\left(x_{i}, x_{i+1}\right)\right) \wedge T\left(x_{n}\right) \wedge R\left(x_{n}, y\right) \wedge F(y)
$$

for $n \geq 1$, is NL-complete.

Proof. The lower bound follows from Theorem 4. The proof of the upper one is by reduction to directed reachability. We split \boldsymbol{q}_{n} into two CQs:

$$
\begin{aligned}
\boldsymbol{q}_{n}^{\prime} & =\exists x_{1}, \ldots, x_{n} \bigwedge_{i=1}^{n-1}\left(T\left(x_{i}\right) \wedge R\left(x_{i}, x_{i+1}\right)\right) \wedge T\left(x_{n}\right) \\
\boldsymbol{q} & =\exists x, y(T(x) \wedge R(x, y) \wedge F(y)) .
\end{aligned}
$$

One can show that, for any $\operatorname{ABox} \mathcal{A}$, we have $\mathcal{D} i s, \mathcal{A} \models \boldsymbol{q}_{n}$ iff there exist a homomorphism $f: \boldsymbol{q}_{n}^{\prime} \rightarrow \mathcal{A}$ and a directed R-path $f\left(x_{n}\right), v_{0}, v_{1}, \ldots, v_{m} \in \operatorname{ind}(\mathcal{A})$ such that $A\left(v_{i}\right) \in \mathcal{A}$, for $i=1, \ldots, m-1$, and $F\left(v_{m}\right) \in \mathcal{A}$. Clearly, this criterion reduces to directed reachability.

To further illustrate how minor modifications to the structure of CQs can send them to different complexity classes, we collect in Table 1 a number of CQs in the scope of Theorem 7, some of which turn out to be NL-complete, while others are P-complete. (All the omitted labels on the arrows in Table 1 are assumed to be $R,-/ A$ means either blank or A, and $F T / A$ means either $F T$ or A).

Here, we only sketch the proof of P-hardness for the OMQ ($\mathcal{D} i s, \boldsymbol{q})$, where \boldsymbol{q} is

The proof is by reduction of the monotone circuit evaluation problem. Given a monotone circuit \boldsymbol{C} and an input $\boldsymbol{\alpha}$, we define an $\mathrm{ABox} \mathcal{A}_{C}^{\boldsymbol{\alpha}}$ as the following labelled directed graph, all of whose edges are labelled with R. For each gate g of C except the inputs and output, the graph contains two vertices g and g^{\prime} labelled with A; the output gate g gives rise to only one vertex g labelled with F, while each input gate g to only one vertex g^{\prime} labelled according to $\boldsymbol{\alpha}$. For an OR-gate $g=h_{1} \vee h_{2}$, we have the directed edges $\left(h_{1}^{\prime}, g\right),\left(h_{2}^{\prime}, g\right),\left(g, r_{g}\right)$, where r_{g} is a new vertex labelled with T. For an ANDgate $g=h_{1} \wedge h_{2}$, we have the edges $\left(h_{1}^{\prime}, g\right),\left(g, h_{2}^{\prime}\right)$. Also, for each gate g, we have the edges $\left(g, g^{\prime}\right),\left(g^{\prime}, t_{g}\right)$, where t_{g} is a new vertex labelled with T. An example illustrating the construction is given below. One can show that $\boldsymbol{C}(\boldsymbol{\alpha})=1$ iff $\mathcal{D} i s, \mathcal{A}_{\boldsymbol{C}}^{\alpha}=\boldsymbol{q}$.

The membership in NL for the CQs in the left column of Table 1 can be shown by constructing appropriate linear datalog programs. For example, answering the OMQ

Table 1. NL- and P-complete OMQs in the scope of Theorem 7.
with the last CQ of the left column can be done by the following linear program:

$$
\begin{aligned}
P(x) & \leftarrow R(x, y), T(y), R(x, z), R(z, v), T(v) \\
P(x) & \leftarrow R(x, y), T(y), R(x, z), R(z, v), P(v), A(v) \\
P(x) & \leftarrow R(x, y), P(y), A(y) \\
G & \leftarrow P(x), F(x)
\end{aligned}
$$

Note that the classification problem we deal with in this section can be regarded as an instance of a more general problem of classifying datalog programs in terms of their data complexity, in particular, finding an NL/P dichotomy.

7 CONP

On the other hand, a minor extension of the CQ from Example 1 can lead to CONPcompleteness. First we show that answering the OMQ $\boldsymbol{Q}=(\mathcal{D} i s, \boldsymbol{q})$ with the Boolean $\mathrm{CQ} q$ given in the picture below is coNP-complete.

Consider the ABoxes \mathcal{A}_{N} constructed according to the pattern shown below for $N=3$:

Let $V=\left\{a_{0}, \ldots, a_{N}\right\}$. It is not hard to see that (i) for any interpretation \mathcal{I} based on \mathcal{A}_{N}, if $\mathcal{I} \not \vDash \boldsymbol{q}$ then either $V \subseteq T^{\mathcal{I}}$ or $V \subseteq F^{\mathcal{I}} ;($ ii $)$ the interpretations \mathcal{I} and \mathcal{I}^{\prime} obtained by extending \mathcal{A}_{N} with $T^{\mathcal{I}}=T^{\mathcal{A}} \cup V$ and $F^{\mathcal{I}^{\prime}}=F^{\mathcal{A}} \cup V$, respectively, are both models of \mathcal{D} is that do not satisfy \boldsymbol{q}.

Given a $2+2-$ CNF ϕ with clauses D_{1}, \ldots, D_{N} and variables p_{1}, \ldots, p_{M}, we take M disjoint copies of \mathcal{A}_{N}, distinguishing between them by the superscripts $1, \ldots, M$. For example, a_{3}^{2} is the a_{3}-point of the second copy of \mathcal{A}_{N} and $V^{2}=\left\{a_{0}^{2}, \ldots, a_{N}^{2}\right\}$. For each D_{n} of the form $\neg p_{i} \vee \neg p_{j} \vee p_{k} \vee p_{l}$, we add to those copies the atoms $R\left(a_{n}^{i}, a_{n}^{j}\right)$, $S\left(a_{n}^{j}, a_{n}^{k}\right)$ and $Q\left(a_{n}^{k}, a_{n}^{l}\right)$, and denote the resulting ABox by \mathcal{A}_{ϕ}.

We show that ϕ is satisfiable iff $\mathcal{D} i s, \mathcal{A}_{\phi} \notin \boldsymbol{q}$. Let $\boldsymbol{q}^{\prime}=R(x, y) \wedge S(y, z) \wedge Q(z, w)$. Observe that any possible match of \boldsymbol{q}^{\prime} in \mathcal{A}_{ϕ} falls into one of the two groups:
(A) $\left(a_{n}^{i}, b_{n}^{i}, c_{n}^{i}, a_{n+1}^{i}\right)$, for $0 \leq n \leq N, 1 \leq i \leq M$ and addition modulo $N+1$;
(B) $\left(a_{n}^{i}, a_{n}^{j}, a_{n}^{k}, a_{n}^{l}\right)$, for some clause $D_{n}=\left(\neg p_{i} \vee \neg p_{j} \vee p_{k} \vee p_{l}\right)$ in ϕ.

Suppose ϕ is satisfiable under an assignment \mathfrak{a}. We define a model \mathcal{I} of \mathcal{D} is by extending \mathcal{A}_{ϕ} with $T^{\mathcal{I}}=T^{\mathcal{A}_{\phi}} \cup \bigcup\left\{V^{i} \mid \mathfrak{a}\left(p_{i}\right)=1\right\}, F^{\mathcal{I}}=F^{\mathcal{A}_{\phi}} \cup \bigcup\left\{V^{i} \mid \mathfrak{a}\left(p_{i}\right)=0\right\}$. We claim that $\mathcal{I} \not \vDash \boldsymbol{q}$. Indeed, the tuples in (A) cannot yield a match by (ii) above, while the tuples in (B) do not give a match since $\mathfrak{a}\left(D_{n}\right)=1$, for all $n \leq N$. To see this, suppose a tuple $\left(a_{n}^{i}, a_{n}^{j}, a_{n}^{k}, a_{n}^{l}\right)$ from (B) is a match for \boldsymbol{q} in \mathcal{I}. Then $\left\{a_{n}^{i}, a_{n}^{j}\right\} \subseteq T^{\mathcal{I}}$ and $\left\{a_{n}^{k}, a_{n}^{l}\right\} \subseteq F^{\mathcal{I}}$, from which $\mathfrak{a}\left(p_{i}\right)=1, \mathfrak{a}\left(p_{j}\right)=1, \mathfrak{a}\left(p_{k}\right)=0$ and $\mathfrak{a}\left(p_{l}\right)=0$, and so the clause $D_{n}=\neg p_{i} \vee \neg p_{j} \vee p_{k} \vee p_{l}$ is false under \mathfrak{a}.

Conversely, suppose \mathcal{D} is, $\mathcal{A}_{\phi} \not \models \boldsymbol{q}$. Then there is a model \mathcal{I} of \mathcal{D} is based on \mathcal{A}_{ϕ} such that $\mathcal{I} \notin \boldsymbol{q}$. By (i) above applied to the copies of \mathcal{A}_{N}, for every $i \leq M$, we have
either $V_{i} \subseteq T^{\mathcal{I}}$ or $V_{i} \subseteq F^{\mathcal{I}}$. In the former case, we set $\mathfrak{a}\left(p_{i}\right)=1$; in the latter one, we set $\mathfrak{a}\left(p_{i}\right)=0$. We claim that ϕ is satisfiable under \mathfrak{a}. Indeed, if $D_{n}=\neg p_{i} \vee \neg p_{j} \vee p_{k} \vee p_{l}$ is false under \mathfrak{a}, then $\mathfrak{a}\left(p_{i}\right)=1, \mathfrak{a}\left(p_{j}\right)=1, \mathfrak{a}\left(p_{k}\right)=0$ and $\mathfrak{a}\left(p_{l}\right)=0$, and so the tuple $\left(a_{n}^{i}, a_{n}^{j}, a_{n}^{k}, a_{n}^{l}\right)$ would be a match for \boldsymbol{q} in \mathcal{I}.

The proposed method is generic in the sense that we can try to apply it to any 'sufficiently asymmetric' CQ \boldsymbol{q} with two T-atoms and two F-atoms: we use a T - F fragment of \boldsymbol{q} for copying the values of the Boolean variables, and the whole \boldsymbol{q} for encoding the clauses of a $2+2$-CNF. However, this method does not work for the CQ
\boldsymbol{q}^{\prime}

which requires a somewhat different technique. We show coNP-hardness of ($\mathcal{D} i s, \boldsymbol{q}^{\prime}$) by reduction of 3SAT. Given a 3CNF ψ, we define an $\mathrm{ABox} \mathcal{A}_{\psi}$ as follows. First, for every variable p in ψ, we construct a 'gadget' shown in the picture below, where the number of A-nodes above each of the circles matches the number of clauses in ψ; we refer to these nodes as p-nodes and, respectively, $\neg p$-nodes (below the circles, there are $2 p$ - and $2 \neg p$-nodes):

Observe that, for any model \mathcal{I} of \mathcal{D} is and the constructed gadget for p, if $\mathcal{I} \not \vDash \boldsymbol{q}$ then either (i) the p-nodes are all in $F^{\mathcal{I}}$ and the $\neg p$-nodes are all in $T^{\mathcal{I}}$, or $(i i)$ the p-nodes are all in $T^{\mathcal{I}}$ and the $\neg p$-nodes are all in $F^{\mathcal{I}}$.

Now, for every clause $c=\left(l_{1} \vee l_{2} \vee l_{3}\right)$ in ψ, we add to the constructed gadgets the atoms $T(c), R\left(c, a_{\neg l_{1}}^{c}\right), R\left(a_{\neg l_{1}}^{c}, a_{l_{2}}^{c}\right), R\left(a_{l_{2}}^{c}, a_{l_{3}}^{c}\right)$, where c is a new individual, $a_{\neg l_{1}}^{c}$ a fresh $\neg l_{1}$-node, $a_{l_{2}}^{c}$ a fresh l_{2}-node, and $a_{l_{3}}^{c}$ a fresh l_{3}-node. For example, for the clause $c=(p \vee q \vee r)$, we obtain the fragment below. The resulting ABox is denoted by \mathcal{A}_{ψ}.

One can show that ψ is satisfiable iff $\mathcal{D} i s, \mathcal{A}_{\psi} \not \models \boldsymbol{q}^{\prime}$.

Acknowledgements. The work of O. Gerasimova and M. Zakharyaschev was carried out at the National Research University Higher School of Economics and supported by the Russian Science Foundation under grant 17-11-01294; the work of V. Podolskii was supported by the Russian Academic Excellence Project '5-100' and by grant MK-7312.2016.1. Thanks are due to Frank Wolter and Carsten Lutz for comments, suggestions and discussions.

References

1. Arora, S., Barak, B.: Computational Complexity: A Modern Approach. Cambridge University Press, New York, NY, USA, 1st edn. (2009)
2. Artale, A., Calvanese, D., Kontchakov, R., Zakharyaschev, M.: The DL-Lite family and relations. Journal of Artificial Intelligence Research (JAIR) 36, 1-69 (2009)
3. Bienvenu, M., ten Cate, B., Lutz, C., Wolter, F.: Ontology-based data access: A study through disjunctive datalog, csp, and MMSNP. ACM Transactions on Database Systems 39(4), 33:144 (2014)
4. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: Tractable reasoning and efficient query answering in description logics: the DL-Lite family. Journal of Automated Reasoning 39(3), 385-429 (2007)
5. Feier, C., Kuusisto, A., Lutz, C.: Rewritability in monadic disjunctive datalog, MMSNP, and expressive description logics. CoRR abs/1701.02231 (2017), http://arxiv.org/ abs/1701. 02231
6. Gottlob, G., Papadimitriou, C.H.: On the complexity of single-rule datalog queries. Inf. Comput. 183(1), 104-122 (2003), http://dx.doi.org/10.1016/S0890-5401(03) 00012-9
7. Hernich, A., Lutz, C., Ozaki, A., Wolter, F.: Schema.org as a description logic. In: Calvanese, D., Konev, B. (eds.) Proceedings of the 28th International Workshop on Description Logics, Athens,Greece, June 7-10, 2015. CEUR Workshop Proceedings, vol. 1350. CEUR-WS.org (2015), http://ceur-ws.org/Vol-1350/paper-24.pdf
8. Kaminski, M., Nenov, Y., Grau, B.C.: Datalog rewritability of disjunctive datalog programs and non-Horn ontologies. Artif. Intell. 236, 90-118 (2016), http://dx.doi.org/10. 1016/j.artint.2016.03.006
9. Papadimitriou, C.: Computational Complexity. Addison-Wesley (1994)
10. Poggi, A., Lembo, D., Calvanese, D., De Giacomo, G., Lenzerini, M., Rosati, R.: Linking data to ontologies. Journal on Data Semantics X, 133-173 (2008)

[^0]: ${ }^{4}$ http://sws.ifi.uio.no/project/npd-v2/
 ${ }^{5}$ http://factpages.npd.no/factpages/

