On the Data Complexity of Ontology-Mediated Queries with a Covering Axiom

O. Gerasimova¹, S. Kikot², V. Podolskii^{3,1}, and M. Zakharyaschev²

¹ National Research University Higher School of Economics, Moscow, Russia
 ² Birkbeck, University of London, U.K.
 ³ Steklov Mathematical Institute, Moscow, Russia

Abstract. This paper reports on our ongoing work that aims at a classification of conjunctive queries q according to the data complexity of answering ontologymediated queries ({ $A \sqsubseteq T \sqcup F$ }, q). We give examples of queries from the complexity classes $\mathfrak{C} \in \{AC^0, L, NL, P, CONP\}$, and obtain a few syntactical conditions for \mathfrak{C} -membership and \mathfrak{C} -hardness.

1 Introduction

The OWL 2 QL profile of OWL 2—as well as the underlining description logics from the *DL*-Lite family [4, 2]—were designed to ensure that every ontology-mediated query (OMQ, for short) (\mathcal{T} , q) with an OWL 2 QL ontology \mathcal{T} and a conjunctive query (CQ) q is first-order (FO) rewritable. However, when developing ontologies for ontologybased data access (OBDA) [10] applications, domain experts are often tempted to use axioms with constructs that are not available in OWL 2 OL. For example, the NPD FactPages ontology,⁴ which was created to facilitate querying the datasets of the Norwegian Petroleum Directorate,⁵ contains cardinality restrictions and covering axioms of the form $A \subseteq B_1 \sqcup \cdots \sqcup B_n$. Typical answers to the question whether such axioms could have a negative impact on OMQ rewriting are as follows: (i) the data satisfies the axioms anyway (because of the database schema), (ii) our 'real-world queries' are never affected by them, and (*iii*) OBDA systems such as Ontop drop everything outside OWL 2 QL. Ideally, of course, we would rather want our system to detect automatically whether the given OMQ is FO-rewritable and alert the user if this is not so. Furthermore, in case of non-FO-rewritability, we might want the system to check whether a datalog rewriting is possible, and so on. From the complexity-theoretic point of view, we are thus interested in the data complexity of answering a given OMQ with an expressive ontology.

A systematic investigation of this problem was started in [3], which showed among other results that answering OMQs of the form (Dis_n, u) , where u is a *union* of CQs (UCQ) and $Dis_n = \{A \sqsubseteq B_1 \sqcup \cdots \sqcup B_n\}$, is polynomially equivalent to the constraint satisfaction problems CSP(\mathfrak{A}). In particular, a P/CONP dichotomy for such OMQs would give a dichotomy for CSPs, thereby confirming the Feder-Vardi conjecture. As

⁴ http://sws.ifi.uio.no/project/npd-v2/

⁵ http://factpages.npd.no/factpages/

shown in [7], answering CQs with basic schema.org ontologies (in particular, Dis_n) and CQs of qvar-size ≤ 2 is in P for combined complexity, where q is of qvar-size n if the restriction of q to its quantified variables is a disjoint union of CQs with at most nvariables each. Moreover, FO- and datalog-rewritability of OMQs of the form (\mathcal{T}, u) , where \mathcal{T} is a schema.org ontology and u is a UCQ, are decidable in NEXPTIME. It has also been recently established in [5] that checking FO-rewritability of OMQs with ontologies formulated in any description logic between \mathcal{ALCI} and \mathcal{SHI} is 2NEXPTIMEcomplete. Datalog rewritability of OMQs with ontologies given in disjunctive datalog has been investigated in [8].

In this paper, we consider one fixed non-Horn ontology $\mathcal{D}is = \{A \sqsubseteq T \sqcup F\}$. Ultimately aiming at a complete classification of CQs q according to the data complexity of answering OMQs $Q = (\mathcal{D}is, q)$, here we present our initial observations about this problem. Ideally, we would like to obtain transparent necessary and sufficient conditions relating the structure of q—say, the way how T and F occur in it—with the complexity of answering Q. For example, one such condition guaranteeing datalog rewritability, and so tractability of answering Q follows from [8, Theorem 27]: it suffices that q contains at most one occurrence of F or at most one occurrence of T. We obtain a few conditions in the same spirit for the complexity classes AC^0 , L, NL and P. We also give quite a few simple and instructive CQs distinguishing between NL and P, and develop techniques for establishing P and CONP lower bounds.

2 Preliminaries

In our context, a *conjunctive query* (*CQ*) is a first-order (FO) formula of the form $q(x) = \exists y \varphi(x, y)$, where φ is a conjunction of unary or binary atoms P(z) with $z \subseteq x \cup y$. Unions of conjunctive queries (UCQ) is a disjunction of conjunctive queries. Given an ABox (or data instance) \mathcal{A} , we denote by $\operatorname{ind}(\mathcal{A})$ the set of individual names that occur in \mathcal{A} . A tuple $a \subseteq \operatorname{ind}(\mathcal{A})$ is a *certain answer* to the OMQ $Q = (\mathcal{D}is, q(x))$ over \mathcal{A} if $\mathfrak{M} \models q(a)$, for every model \mathfrak{M} of $\mathcal{D}is \cup \mathcal{A}$; in this case we write $\mathcal{D}is, \mathcal{A} \models q(a)$. If the set x of answer variables is empty, a *certain answer* to Q over \mathcal{D} is 'yes' if $\mathfrak{M} \models q$, for every model \mathfrak{M} of $\mathcal{D}is \cup \mathcal{A}$, and 'no' otherwise. OMQs and CQs without answer variables x are called *Boolean*. We often regard CQs as *sets* of their atoms. In this paper, we assume that the all CQs are *connected*.

Let Q = (Dis, q(x)) be a fixed OMQ. By *answering* Q, we understand the problem of checking, given an ABox A and a tuple $a \subseteq ind(A)$, whether $Dis, A \models q(a)$. It is readily seen that this problem is always in CONP. It is in the complexity class AC^0 if there is an FO-formula q'(x), called an *FO-rewriting* of Q, such that $Dis, A \models q(a)$ iff q'(a) holds in the model given by A, for any ABox A and any tuple $a \subseteq ind(A)$.

A datalog program, Π , is a finite set of rules of the form $\forall z (\gamma_0 \leftarrow \gamma_1 \land \cdots \land \gamma_m)$, where each γ_i is an atom Q(y) with $y \subseteq z$ or an equality (z = z') with $z, z' \in z$. (As usual, we omit $\forall z$.) The atom γ_0 is the *head* of the rule, and $\gamma_1, \ldots, \gamma_m$ its *body*. All variables in the head must occur in the body, and = can only occur in the body. The predicates in the heads of rules in Π are *IDB predicates*, the rest (including =) *EDB* predicates. A program Π is called *linear* if the body of every rule in Π contains at most one IDB predicate. A datalog query is a pair $(\Pi, G(\mathbf{x}))$, where Π is a datalog program and $G(\mathbf{x})$ an atom. A tuple $\mathbf{a} \subseteq ind(\mathcal{A})$ is an answer to $(\Pi, G(\mathbf{x}))$ over an ABox \mathcal{A} if $G(\mathbf{a})$ holds in the first-order structure with domain $ind(\mathcal{A})$ obtained by closing \mathcal{A} under the rules in Π ; in this case we write $\Pi, \mathcal{A} \models G(\mathbf{a})$. A datalog query $(\Pi, G(\mathbf{x}))$ is a datalog rewriting of an OMQ $\mathbf{Q} = (\mathcal{D}is, \mathbf{q}(\mathbf{x}))$ in case $\mathcal{D}is, \mathcal{A} \models \mathbf{q}(\mathbf{a})$ iff $\Pi, \mathcal{A} \models G(\mathbf{a})$, for any ABox \mathcal{A} and any $\mathbf{a} \subseteq ind(\mathcal{A})$. The evaluation problem for $(\Pi, G(\mathbf{x}))$ —that is, checking, given an ABox \mathcal{A} and a tuple $\mathbf{a} \subseteq ind(\mathcal{A})$, whether $\Pi, \mathcal{A} \models G(\mathbf{a})$ —is known to be in P; for linear Π , this problem is in NL; see [6] and references therein.

3 AC⁰

By a *solitary occurrence* of F in a CQ q we mean any $F(x) \in q$ such that $T(x) \notin q$; likewise, a *solitary occurrence* of T in q is any $T(x) \in q$ such that $F(x) \notin q$.

Theorem 1. For any CQ q without solitary occurrences of F (or T), answering the OMQ Q = (Dis, q) is in AC⁰.

Proof. We show that $\mathcal{D}is, \mathcal{A} \models q(a)$ iff $\mathcal{A} \models q(a)$. Suppose that $\mathcal{A} \not\models q(a)$ and $F(x) \in q \Rightarrow T(x) \in q$. Take $\mathcal{A}' = \mathcal{A} \cup \{F(a) \mid a \in ind(\mathcal{A}) \land T(a) \notin \mathcal{A}\}$. Clearly, $\mathcal{A}' \models \mathcal{D}is$ and $\mathcal{A}' \not\models q(a)$. The converse direction is trivial.

In particular, answering any OMQ Q = (Dis, q), where q does not contain one of F or T, is in AC⁰. This observation can be easily generalised to OMQs with ontologies $Dis_n = \{A \sqsubseteq B_1 \sqcup \cdots \sqcup B_n\}$, for $n \ge 2$:

Theorem 2. Suppose q is any CQ that does not contain an occurrence of B_i , for some $i \ (1 \le i \le n)$. Then answering the $OMQ \ Q = (Dis_n, q)$ is in AC^0 .

Thus, only those CQs can 'feel' Dis_n as far as FO-rewritability is concerned that contain all the B_n (which makes them quite complex in practice). Theorem 1 also shows that Q = (Dis, q) satisfying the respective condition has a trivial FO-rewriting, viz. q itself. This is not accidental as shown by the following observation:

Proposition 1. If Q = (Dis, q) is in AC⁰, then q is a rewriting of Q.

Proof. By [3, Proposition 5.9], if Q is FO-rewritable, it has a UCQ rewriting. Then there is a homomorphism from q to any CQ q' in this rewriting.

We do not know yet whether the sufficient condition for FO-rewritability given by Theorem 1 is also a necessary one for *minimal* CQs q (that are not equivalent to any of their proper subqueries). For non-minimal CQs, this is not the case as shown by $F \xleftarrow[R]{} \circ \xleftarrow[R]{} FT \xleftarrow[R]{} \circ \xleftarrow[R]{} T$ which is in AC⁰ because it is equivalent to the CQ $\circ \xleftarrow[R]{} FT \xleftarrow[R]{} \circ @$. Below we obtain some partial results showing how a single *F*-atom and a single *T*-atom in q can cause L- and NL-hardness.

4 L and NL

We say that a Boolean CQ q is an F-T-CQ if it has exactly one atom of the form F(x), exactly one atom of the form T(y), and the variables x and y are distinct.

Theorem 3. Answering any OMQ Q = (Dis, q) with an F-T-CQ q is L-hard.

Proof. The proof is by reduction to the reachability problem for undirected graphs, which is known to be L-complete; see, e.g., [1]. Let q' be the CQ obtained from q by removing the atoms F(x) and T(y). Suppose we are given an undirected graph G = (V, E) and two vertices $s, t \in V$. It will be convenient to regard G as a directed graph such that $(u, v) \in E$ iff $(v, u) \in E$, for any $u, v \in V$. We encode G by means of an ABox \mathcal{A}_G that is obtained from G as follows. For every edge $e = (u, v) \in E$, let q'_e be the set of atoms in q' with x renamed to u, y to v and all other variables z to z_e . Then \mathcal{A}_G comprises all such q_e , for $e \in E$, as well as F(s), T(t) and A(v), for $v \in V \setminus \{s, t\}$. Our aim is to show that $s \to_G t$ iff $\mathcal{D}is, \mathcal{A}_G \models q$.

Suppose $s \to_G t$, that is, there exists a path $s = v_0, v_1, \ldots, v_n = t$ in G with $e_i = (v_i, v_{i+1}) \in E$, for i < n. Consider an arbitrary model \mathcal{I} of $\mathcal{D}is$ and \mathcal{A}_G . Since $\mathcal{I} \models \mathcal{D}is$ and $F(s), T(t), A(v_i)$, for $1 \le i < n$, are all in \mathcal{A}_G , we can find some i < n such that $\mathcal{I} \models F(v_i)$ and $\mathcal{I} \models T(v_{i+1})$. As q'_{e_i} is an isomorphic copy of q', we obtain $\mathcal{I} \models q$. Conversely, suppose $s \not\to_G t$. Define an interpretation \mathcal{I} by extending the ABox \mathcal{A}_G with $F^{\mathcal{I}} = \{v \in V \mid s \to_G v\}$ and $T^{\mathcal{I}} = \{v \in V \mid s \not\to_G v\}$. Clearly, \mathcal{I} is a model of $\mathcal{D}is$. By the construction, the elements of the connected component of \mathcal{I} containing s cannot be instances of T, while the remaining elements of \mathcal{I} cannot be instances of F. Since q is connected, it follows that $\mathcal{I} \not\models q$.

We call a Boolean CQ q linear-directed if all of its variables can be arranged in a sequence v_0, \ldots, v_m such that all binary predicates in q are of the form $R(v_i, v_{i+1})$, for some $i, 0 \le i < m$.

Theorem 4. Answering any $OMQ \ Q = (Dis, q)$ with a linear-directed $CQ \ q$ containing both a solitary F and a solitary T is NL-hard.

Proof. Suppose $F(v_k) \in q$, $T(v_k) \notin q$ and $F(v_l) \notin q$, $T(v_l) \in q$, for some k, l with $0 \leq k < l \leq m$. We rename the sequence v_k, \ldots, v_l to x_0, \ldots, x_n . The proof proceeds by reduction to the reachability problem in directed graphs, which is known to be NL-complete; see, e.g., [1]. Given a *directed* graph G = (V, E) and vertices $s, t \in V$, we construct the ABox \mathcal{A}_G in the same way as in the proof of Theorem 3 treating x_0 as x and x_n as y. Again, we show that $s \to_G t$ iff $\mathcal{D}is$, $\mathcal{A}_G \models q$. The implication (\Rightarrow) is established exactly as above.

To prove (\Leftarrow), we assume that $s \not\rightarrow_G t$ and consider the same model \mathcal{I} as defined in the proof of Theorem 3. Taking account of linear-directedness of q, we immediately conclude that there is no homomorphism $h: q \to \mathcal{I}$ with $h(x_0) \in V$. It remains to show that there is no homomorphism $h: q \to \mathcal{I}$ with $h(x_0) \notin V$ either. Suppose to the contrary that such a homomorphism exists. Then there exist $B \in \{F, T\}$ and a homomorphism $f: q \to (\mathcal{A}_{G_2} \cup \{B(r)\})$, where $G_2 = (\{s, r, t\}, \{(s, r), (r, t)\})$. We denote the points of \mathcal{A}_{G_2} between s and r by x_0, x_1, \ldots, x_n and those between r and *t* by x_n, x'_1, \ldots, x'_n . By comparing the lengths of appropriate segments of q, we obtain $f(x_0) = x_i$, for some $i \ (0 < i < n)$. As $F(x_0) \in q$, we must have $F(x_i) \in q$; see the picture below. As $f(x_i) = x_{2i}$ if $2i \le n$, and $f(x_i) = x'_{2i \mod n}$ otherwise, we also have $F(x_{2i \mod n}) \in q$; more generally, $F(x_{ki \mod n}) \in q$ for all natural k. Now, since the equation of the form ' $iX = n \mod n$ ' always has a solution, $F(x_n) \in q$, which is impossible if B = T. If B = F, we use a similar argument starting from $T(x_i) \in q$ and show that $T(x_n) \in q$, which is again a contradiction.

$$F \xrightarrow{f(x_0)} f(x_i) \xrightarrow{B} \cdots \xrightarrow{x'_i} \cdots \xrightarrow{x'_n} F \xrightarrow{x_i} \cdots \xrightarrow{x_i} \cdots \xrightarrow{x_i} \cdots \xrightarrow{x_i} \cdots \xrightarrow{x_n} F \xrightarrow{x_0} \cdots \xrightarrow{x_i} \cdots \xrightarrow{x_i} \cdots \xrightarrow{x_j} \cdots \xrightarrow{x_n} T$$

Theorems 1 and 4 give the following *dichotomy* for OMQs Q = (Dis, q) with linear-directed CQs q:

- either q does not contain a solitary F or a solitary T, and answering Q is in AC^0 ,
- or q contains both solitary F and T, and answering Q is NL-hard.

We now complement the sufficient conditions of L- and NL-hardness obtained above with sufficient conditions of OMQ answering in L- and NL.

A CQ q'(x, y) is symmetric if the CQs q'(x, y) and q'(y, x) are equivalent in the sense that q'(a, b) holds in \mathcal{A} iff q'(b, a) holds in \mathcal{A} , for any ABox \mathcal{A} and $a, b \in ind(\mathcal{A})$.

Theorem 5. Let Q = (Dis, q) be any OMQ such that

$$\boldsymbol{q} = \exists x, y \left(F(x) \land \boldsymbol{q}_1'(x) \land \boldsymbol{q}'(x, y) \land \boldsymbol{q}_2'(y) \land T(y) \right),$$

for some connected CQs q'(x, y), $q'_1(x)$ and $q'_2(y)$ that do not contain solitary T and F, and q'(x, y) is symmetric. Then answering Q can be done in L.

Proof. It is not hard to show that, for any ABox \mathcal{A} , we have $\mathcal{D}is, \mathcal{A} \models q$ iff there exist $v_0, v_1, \ldots, v_n \in ind(\mathcal{A})$, for some $n \ge 1$, such that the following conditions hold:

 $-F(v_0), A(v_1), \dots, A(v_{n-1}), T(v_n) \in \mathcal{A};$ $-\mathcal{A} \models \mathbf{q}'(v_i, v_{i+1}) \text{ for } 0 \le i < n;$ $-\mathcal{A} \models \mathbf{q}'_1(v_i) \text{ for } 0 \le i < n;$ $-\mathcal{A} \models \mathbf{q}'_2(v_i) \text{ for } 1 \le i \le n.$

It remains to observe that checking these conditions reduces to checking $V_T - V_F$ reachability in the undirected graph $G_A = (V_A, E_A)$ defined below. The vertices in G_A comprise the set $V_A = V_T \cup V_A \cup V_F$, where

 $\begin{aligned} &-V_T = \{ v \in \mathsf{ind}(\mathcal{A}) \mid \mathcal{A} \models T(v) \land \mathbf{q}_2'(v) \}; \\ &-V_A = \{ v \in \mathsf{ind}(\mathcal{A}) \mid \mathcal{A} \models A(v) \land \mathbf{q}_1'(v) \land \mathbf{q}_2'(v) \}; \\ &-V_F = \{ v \in \mathsf{ind}(\mathcal{A}) \mid \mathcal{A} \models F(v) \land \mathbf{q}_1'(v) \}. \end{aligned}$

The edges in G_A comprise the set $E_A = E_{TA} \cup E_{AA} \cup E_{FA}$, where

 $\begin{array}{l} - \ E_{all} = \{(x,y) \mid \mathcal{A} \models \boldsymbol{q}'(x,y)\}; \\ - \ E_{TA} = \{(x,y) \in E_{all} \mid (x \in V_T \land y \in V_A) \lor (y \in V_T \land x \in V_A)\}; \\ - \ E_{AA} = \{(x,y) \in E_{all} \mid x \in V_A \land y \in V_A\}; \\ - \ E_{FA} = \{(x,y) \in E_{all} \mid (x \in V_F \land y \in V_A) \lor (y \in V_F \land x \in V_A)\}. \end{array}$

It is readily seen that $G_{\mathcal{A}} = (V_{\mathcal{A}}, E_{\mathcal{A}})$ is undirected in the sense that, for all of its vertices u and $v, (u, v) \in E_{\mathcal{A}}$ iff $(u, v) \in E_{\mathcal{A}}$.

If we do not require q'(x, y) to be symmetric, the complexity upper bound increases to NL:

Theorem 6. Let Q = (Dis, q) be any OMQ such that

$$\boldsymbol{q} = \exists x, y \left(F(x) \land T(y) \land \boldsymbol{q}'(x, y) \right),$$

for some connected CQ q'(x, y) without solitary occurrences of F and T. Then answering Q can be done in NL.

Proof. We claim that the datalog query (Π, G) with the following linear datalog program Π , where \tilde{q}' is the result of omitting all the \exists from q':

$$G \leftarrow F(x) \land \tilde{q}'(x,y) \land P(y)$$

$$P(x) \leftarrow T(x)$$

$$P(x) \leftarrow A(x) \land \tilde{q}'(x,y) \land P(y)$$

is a datalog rewriting of Q. Indeed, if $\Pi, \mathcal{A} \models G$ then there are $v_0, v_1, \ldots, v_n \in \operatorname{ind}(\mathcal{A})$ such that $F(v_0), A(v_1), \ldots, A(v_{n-1}), T(v_n) \in \mathcal{A}$ and $q'(v_i, v_{i+1})$ holds in \mathcal{A} , for $0 \leq i < n$. Clearly, in any model \mathcal{I} of \mathcal{D} is and \mathcal{A} there is i with $\mathcal{I} \models F(v_i) \wedge T(v_{i+1})$. It follows that \mathcal{D} is, $\mathcal{A} \models q$.

Conversely, suppose $\Pi, \mathcal{A} \not\models G$. Let $V_P = \{v \in ind(\mathcal{A}) \mid \Pi, \mathcal{A} \models P(v)\}$. Define a model \mathcal{I} of $\mathcal{D}is$ with domain $ind(\mathcal{A})$ by setting

$$T^{\mathcal{I}} = \{ v \mid T(v) \in \mathcal{A} \} \cup \{ v \in V_P \mid A(v) \in \mathcal{A} \}, \quad F^{\mathcal{I}} = F^{\mathcal{A}} \cup \{ v \notin V_P \mid A(v) \in \mathcal{A} \}.$$

We claim that $\mathcal{I} \not\models q$. Indeed, otherwise there is a homomorphism $h: q \to \mathcal{I}$. As $h(y) \in T^{\mathcal{I}}$, we have $\Pi, \mathcal{A} \models P(h(y))$. As $h(x) \in F^{\mathcal{I}}$, we have either $F(h(x)) \in \mathcal{A}$ or $A(h(x)) \in \mathcal{A}$, contrary to $\Pi, \mathcal{A} \not\models G$.

The sufficient conditions of Theorems 5 and 6 only apply to CQs with exactly one solitary occurrence of F and exactly one solitary occurrence of T. What happens if we allow more than one solitary occurrences of F or T?

5 P

The following result is a consequence of [8, Theorem 27]:

Theorem 7. Let Q = (Dis, q) be any OMQ such that

$$\boldsymbol{q} = \exists x, y_1, \dots, y_n \, (F(x) \wedge T(y_1) \wedge \dots \wedge T(y_n) \wedge \boldsymbol{q}'(x, y_1, \dots, y_n)),$$

for some connected CQ $q'(x, y_1, ..., y_n)$ without solitary occurrences of T and F. Then answering Q can be done in P.

Indeed, for any ABox \mathcal{A} , we have $\mathcal{D}is, \mathcal{A} \models q$ iff $\Pi, \mathcal{A} \models G$, where Π is the following datalog program and \tilde{q}' is the result of omitting all the \exists from q':

$$G \leftarrow F(x) \land \tilde{q}'(x, y_1, \dots, y_n) \land P(y_1) \land \dots \land P(y_n)$$

$$P(x) \leftarrow T(x)$$

$$P(x) \leftarrow A(x) \land \tilde{q}'(x, y_1, \dots, y_n) \land P(y_1) \land \dots \land P(y_n).$$

Is the P-upper bound of Theorem 7 optimal? The following example gives a typical OMQ in the scope of that theorem answering which is P-hard.

Example 1. We show that
$$Q = (Dis, q)$$
 is P-hard for q shown in the picture below.
 $T \qquad T \qquad F$
 $O \qquad S \qquad O$

The proof is by reduction of the alternating monotone circuit evaluation problem, which is known to be P-complete [9]. An example of an alternating monotone circuit is shown in the picture below. Given such a circuit C and an input α , we define an ABox \mathcal{A}^{α}_{C} as the set of the following atoms:

- R(g,h), if a gate g is an input of a gate h;
- -S(g,h), if g and h are distinct inputs of some AND-gate;
- S(g, g), if g is an input gate or a non-output AND-gate; T(g), if g is an input gate with 1 under α ;
- F(g), for the only output gate g;
- -A(g), for those g that are neither inputs nor the output.

To illustrate, the picture below shows an alternating monotone circuit C, an input α for it, and the ABox \mathcal{A}^{α}_{C} , where the solid arrows represent R and the dashed ones S:

One can show that $C(\alpha) = 1$ iff $\mathcal{D}is, \mathcal{A}^{\alpha}_{C} \models q$.

Curiously, by changing S to R in the CQ from Example 1, we obtain an OMQ that is NL-complete as follows from Theorem 8 below.

6 NL vs. P

Theorem 8. Answering any OMQ $Q = (Dis, q_n)$ with

$$\boldsymbol{q}_n = \exists x_1, \dots, x_n, y \bigwedge_{i=1}^{n-1} \left(T(x_i) \land R(x_i, x_{i+1}) \right) \land T(x_n) \land R(x_n, y) \land F(y),$$

for $n \ge 1$, is NL-complete.

Proof. The lower bound follows from Theorem 4. The proof of the upper one is by reduction to directed reachability. We split q_n into two CQs:

$$\boldsymbol{q}'_n = \exists x_1, \dots, x_n \bigwedge_{i=1}^{n-1} \left(T(x_i) \wedge R(x_i, x_{i+1}) \right) \wedge T(x_n),$$
$$\boldsymbol{q} = \exists x, y \left(T(x) \wedge R(x, y) \wedge F(y) \right).$$

One can show that, for any ABox \mathcal{A} , we have $\mathcal{D}is$, $\mathcal{A} \models q_n$ iff there exist a homomorphism $f: q'_n \to \mathcal{A}$ and a directed *R*-path $f(x_n), v_0, v_1, \ldots, v_m \in \text{ind}(\mathcal{A})$ such that $A(v_i) \in \mathcal{A}$, for $i = 1, \ldots, m-1$, and $F(v_m) \in \mathcal{A}$. Clearly, this criterion reduces to directed reachability.

To further illustrate how minor modifications to the structure of CQs can send them to different complexity classes, we collect in Table 1 a number of CQs in the scope of Theorem 7, some of which turn out to be NL-complete, while others are P-complete. (All the omitted labels on the arrows in Table 1 are assumed to be R, -/A means either blank or A, and FT/A means either FT or A).

Here, we only sketch the proof of P-hardness for the OMQ (Dis, q), where q is

$$\begin{array}{c} T & F & T \\ O & R & O & R \end{array}$$

The proof is by reduction of the monotone circuit evaluation problem. Given a monotone circuit C and an input α , we define an ABox \mathcal{A}_C^{α} as the following labelled directed graph, all of whose edges are labelled with R. For each gate g of C except the inputs and output, the graph contains two vertices g and g' labelled with A; the output gate g gives rise to only one vertex g labelled with F, while each input gate g to only one vertex g' labelled according to α . For an OR-gate $g = h_1 \vee h_2$, we have the directed edges $(h'_1, g), (h'_2, g), (g, r_g)$, where r_g is a new vertex labelled with T. For an ANDgate $g = h_1 \wedge h_2$, we have the edges $(h'_1, g), (g, h'_2)$. Also, for each gate g, we have the edges $(g, g'), (g', t_g)$, where t_g is a new vertex labelled with T. An example illustrating the construction is given below. One can show that $C(\alpha) = 1$ iff $\mathcal{D}is, \mathcal{A}_C^{\alpha} \models q$.

The membership in NL for the CQs in the left column of Table 1 can be shown by constructing appropriate linear datalog programs. For example, answering the OMQ

 Table 1. NL- and P-complete OMQs in the scope of Theorem 7.

with the last CQ of the left column can be done by the following linear program:

$$\begin{array}{l} P(x) \leftarrow R(x,y), T(y), R(x,z), R(z,v), T(v) \\ P(x) \leftarrow R(x,y), T(y), R(x,z), R(z,v), P(v), A(v) \\ P(x) \leftarrow R(x,y), P(y), A(y) \\ G \leftarrow P(x), F(x) \end{array}$$

Note that the classification problem we deal with in this section can be regarded as an instance of a more general problem of classifying *datalog programs* in terms of their data complexity, in particular, finding an NL/P dichotomy.

7 CONP

On the other hand, a minor extension of the CQ from Example 1 can lead to CONPcompleteness. First we show that answering the OMQ Q = (Dis, q) with the Boolean CQ q given in the picture below is CONP-complete.

Consider the ABoxes A_N constructed according to the pattern shown below for N = 3:

Let $V = \{a_0, \ldots, a_N\}$. It is not hard to see that (*i*) for any interpretation \mathcal{I} based on \mathcal{A}_N , if $\mathcal{I} \not\models q$ then either $V \subseteq T^{\mathcal{I}}$ or $V \subseteq F^{\mathcal{I}}$; (*ii*) the interpretations \mathcal{I} and \mathcal{I}' obtained by extending \mathcal{A}_N with $T^{\mathcal{I}} = T^{\mathcal{A}} \cup V$ and $F^{\mathcal{I}'} = F^{\mathcal{A}} \cup V$, respectively, are both models of \mathcal{D} is that do not satisfy q.

Given a 2+2-CNF ϕ with clauses D_1, \ldots, D_N and variables p_1, \ldots, p_M , we take M disjoint copies of \mathcal{A}_N , distinguishing between them by the superscripts $1, \ldots, M$. For example, a_3^2 is the a_3 -point of the second copy of \mathcal{A}_N and $V^2 = \{a_0^2, \ldots, a_N^2\}$. For each D_n of the form $\neg p_i \lor \neg p_j \lor p_k \lor p_l$, we add to those copies the atoms $R(a_n^i, a_n^j)$, $S(a_n^j, a_n^k)$ and $Q(a_n^k, a_n^l)$, and denote the resulting ABox by \mathcal{A}_{ϕ} .

We show that ϕ is satisfiable iff $\mathcal{D}is$, $\mathcal{A}_{\phi} \not\models \mathbf{q}$. Let $\mathbf{q}' = R(x, y) \land S(y, z) \land Q(z, w)$. Observe that any possible match of \mathbf{q}' in \mathcal{A}_{ϕ} falls into one of the two groups: (A) $(a_n^i, b_n^i, c_n^i, a_{n+1}^i)$, for $0 \le n \le N$, $1 \le i \le M$ and addition modulo N + 1; (B) $(a_n^i, a_n^j, a_n^k, a_n^l)$, for some clause $D_n = (\neg p_i \lor \neg p_j \lor p_k \lor p_l)$ in ϕ .

Suppose ϕ is satisfiable under an assignment \mathfrak{a} . We define a model \mathcal{I} of $\mathcal{D}is$ by extending \mathcal{A}_{ϕ} with $T^{\mathcal{I}} = T^{\mathcal{A}_{\phi}} \cup \bigcup \{V^i \mid \mathfrak{a}(p_i) = 1\}, F^{\mathcal{I}} = F^{\mathcal{A}_{\phi}} \cup \bigcup \{V^i \mid \mathfrak{a}(p_i) = 0\}$. We claim that $\mathcal{I} \not\models q$. Indeed, the tuples in (A) cannot yield a match by (ii) above, while the tuples in (B) do not give a match since $\mathfrak{a}(D_n) = 1$, for all $n \leq N$. To see this, suppose a tuple $(a_n^i, a_n^j, a_n^k, a_n^l)$ from (B) is a match for q in \mathcal{I} . Then $\{a_n^i, a_n^j\} \subseteq T^{\mathcal{I}}$ and $\{a_n^k, a_n^l\} \subseteq F^{\mathcal{I}}$, from which $\mathfrak{a}(p_i) = 1$, $\mathfrak{a}(p_j) = 1$, $\mathfrak{a}(p_k) = 0$ and $\mathfrak{a}(p_l) = 0$, and so the clause $D_n = \neg p_i \lor \neg p_j \lor p_k \lor p_l$ is false under \mathfrak{a} .

Conversely, suppose $\mathcal{D}is, \mathcal{A}_{\phi} \not\models q$. Then there is a model \mathcal{I} of $\mathcal{D}is$ based on \mathcal{A}_{ϕ} such that $\mathcal{I} \not\models q$. By (i) above applied to the copies of \mathcal{A}_N , for every $i \leq M$, we have

either $V_i \subseteq T^{\mathcal{I}}$ or $V_i \subseteq F^{\mathcal{I}}$. In the former case, we set $\mathfrak{a}(p_i) = 1$; in the latter one, we set $\mathfrak{a}(p_i) = 0$. We claim that ϕ is satisfiable under \mathfrak{a} . Indeed, if $D_n = \neg p_i \vee \neg p_j \vee p_k \vee p_l$ is false under \mathfrak{a} , then $\mathfrak{a}(p_i) = 1$, $\mathfrak{a}(p_j) = 1$, $\mathfrak{a}(p_k) = 0$ and $\mathfrak{a}(p_l) = 0$, and so the tuple $(a_n^i, a_n^j, a_n^k, a_n^l)$ would be a match for \boldsymbol{q} in \mathcal{I} .

The proposed method is generic in the sense that we can try to apply it to any 'sufficiently asymmetric' CQ q with two T-atoms and two F-atoms: we use a T-F fragment of q for copying the values of the Boolean variables, and the whole q for encoding the clauses of a 2 + 2-CNF. However, this method does not work for the CQ

$$q' \qquad \overset{T}{\overset{T}{\underset{R}{\longrightarrow}}} \overset{T}{\overset{F}{\underset{R}{\longrightarrow}}} \overset{F}{\overset{F}{\underset{R}{\longrightarrow}}} \overset{F}{\overset{F}{\underset{R}{\overset{F}{\overset{F}{\underset{R}{\longrightarrow}}}} \overset{F}{\overset{F}{\underset{R}{\overset{F}{\underset{R}{\overset{F}{\overset{R}{\underset{R}{\overset{F}{\underset{R}{\overset{R}{\underset{R}{\overset{F}{\underset{R}{\overset{R}{\underset{R}{\overset{F}{\underset{R}{\overset{R}{\underset{R}{\overset{F}{\underset{R}{\overset{R}{\underset{R}{\overset{F}{\underset{R}{\overset{R}{\underset{R}{\overset{F}{\underset{R}{\overset{R}{\underset{R}{\overset{R}{\underset{R}{\overset{R}{\underset{R}{\overset{R}{\underset{R}{\overset{R}{\underset{R}{\overset{R}{\underset{R}{\overset{R}{\underset{R}{\overset{R}{\underset{R}{\overset{R}{\underset{R}{\overset{R}{\underset{R}{\overset{R}{\underset{R}{\overset{R}{\underset{R}{\overset{R}{\underset{R}{\overset{R}{\underset{R}{\overset{R}{\underset{R}{\overset{R$$

which requires a somewhat different technique. We show CONP-hardness of (Dis, q') by reduction of 3SAT. Given a 3CNF ψ , we define an ABox \mathcal{A}_{ψ} as follows. First, for every variable p in ψ , we construct a 'gadget' shown in the picture below, where the number of A-nodes above each of the circles matches the number of clauses in ψ ; we refer to these nodes as p-nodes and, respectively, $\neg p$ -nodes (below the circles, there are 2 p- and 2 $\neg p$ -nodes):

Observe that, for any model \mathcal{I} of $\mathcal{D}is$ and the constructed gadget for p, if $\mathcal{I} \not\models q$ then either (i) the p-nodes are all in $F^{\mathcal{I}}$ and the $\neg p$ -nodes are all in $T^{\mathcal{I}}$, or (ii) the p-nodes are all in $T^{\mathcal{I}}$.

Now, for every clause $c = (l_1 \vee l_2 \vee l_3)$ in ψ , we add to the constructed gadgets the atoms T(c), $R(c, a_{-l_1}^c)$, $R(a_{-l_1}^c, a_{l_2}^c)$, $R(a_{l_2}^c, a_{l_3}^c)$, where c is a new individual, $a_{-l_1}^c$ a fresh $\neg l_1$ -node, $a_{l_2}^c$ a fresh l_2 -node, and $a_{l_3}^c$ a fresh l_3 -node. For example, for the clause $c = (p \vee q \vee r)$, we obtain the fragment below. The resulting ABox is denoted by \mathcal{A}_{ψ} .

One can show that ψ is satisfiable iff $\mathcal{D}is, \mathcal{A}_{\psi} \not\models q'$.

Acknowledgements. The work of O. Gerasimova and M. Zakharyaschev was carried out at the National Research University Higher School of Economics and supported by the Russian Science Foundation under grant 17-11-01294; the work of V. Podolskii was supported by the Russian Academic Excellence Project '5-100' and by grant MK-7312.2016.1. Thanks are due to Frank Wolter and Carsten Lutz for comments, suggestions and discussions.

References

- 1. Arora, S., Barak, B.: Computational Complexity: A Modern Approach. Cambridge University Press, New York, NY, USA, 1st edn. (2009)
- Artale, A., Calvanese, D., Kontchakov, R., Zakharyaschev, M.: The DL-Lite family and relations. Journal of Artificial Intelligence Research (JAIR) 36, 1–69 (2009)
- Bienvenu, M., ten Cate, B., Lutz, C., Wolter, F.: Ontology-based data access: A study through disjunctive datalog, csp, and MMSNP. ACM Transactions on Database Systems 39(4), 33:1– 44 (2014)
- Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: Tractable reasoning and efficient query answering in description logics: the *DL-Lite* family. Journal of Automated Reasoning 39(3), 385–429 (2007)
- Feier, C., Kuusisto, A., Lutz, C.: Rewritability in monadic disjunctive datalog, MMSNP, and expressive description logics. CoRR abs/1701.02231 (2017), http://arxiv.org/ abs/1701.02231
- Gottlob, G., Papadimitriou, C.H.: On the complexity of single-rule datalog queries. Inf. Comput. 183(1), 104–122 (2003), http://dx.doi.org/10.1016/S0890-5401(03) 00012-9
- Hernich, A., Lutz, C., Ozaki, A., Wolter, F.: Schema.org as a description logic. In: Calvanese, D., Konev, B. (eds.) Proceedings of the 28th International Workshop on Description Logics, Athens,Greece, June 7-10, 2015. CEUR Workshop Proceedings, vol. 1350. CEUR-WS.org (2015), http://ceur-ws.org/Vol-1350/paper-24.pdf
- Kaminski, M., Nenov, Y., Grau, B.C.: Datalog rewritability of disjunctive datalog programs and non-Horn ontologies. Artif. Intell. 236, 90–118 (2016), http://dx.doi.org/10. 1016/j.artint.2016.03.006
- 9. Papadimitriou, C.: Computational Complexity. Addison-Wesley (1994)
- Poggi, A., Lembo, D., Calvanese, D., De Giacomo, G., Lenzerini, M., Rosati, R.: Linking data to ontologies. Journal on Data Semantics X, 133–173 (2008)