Development of a server to support the formal
semantic web query language OWL-QL

Jan Galinski, Atila Kaya, Ralf Moller
Hamburg University of Science and Technology
Hamburg, DE
mail@jan-galinski.de, at.kayal|r.f.moeller@tuhh.de

In this abstract we present a server that supports OWL-QL query-answering
dialogues by making use of the reasoning capabilities of the DL reasoner Racer.
Currently, users can use Racer to query an OWL knowledge base using nRQL or
DIG. Our primary goal in developing an OWL-QL server is to offer as many as
possible reasoning functions of Racer in the standard query language OWL-QL.

This first version of our implementation is aimed to support significant OW L-
QL features that can easily be translated into the native Racer Query Language
nRQL. Currently, it supports queries for ABox retrieval with distinguished vari-
ables (must-binds) and conjunctive queries. Further important OWL-QL fea-
tures, such as may-bind variables, can be expressed in nRQL through reformu-
lation and will be supported in the future. The response collections returned
by the server contain no duplicate answers. Moreover the server provides non-
redundant answers.

In order to develop such a server we enhanced the existing Racer proxy
to offer OWL-QL support as a web service. The existing Racer proxy is a
standalone java application that serves as a Racer front-end for clients. They
can communicate with the Racer proxy in nRQL or DIG. We integrated standard
open source software components and frameworks into the architecture, such as
Tomcat, Apache Axis, the XMLBeans Framework and the Jena Semantic Web
Framework, so that the solution gets more transparent and will benefit from
further component evolution.

Our solution offers OWL-QL support as a web service in order to enable the
interaction of clients and server, which are loosely coupled. A pivotal feature
of our solution is a caching mechanism that operates at two different layers of
the architecture: At the bottom layer of the architecture the iterative query
answering support of the new Racer version (tuple-at-a-time mode) is used to
cache results. Secondly, at the top layer we implemented a caching mechanism in
OWL-QL dialogues that caches queries, answers and client session information.



