
Planning Problems for Graph Structured Data in
Description Logics ∗

Shqiponja Ahmetaj1, Diego Calvanese2, Magdalena Ortiz1, and Mantas Šimkus1

1 Institute of Information Systems, Vienna University of Technology, Austria
2 KRDB Research Centre for Knowledge and Data, Free University of Bozen-Bolzano, Italy

Motivation The complex structure and increasing size of information that has to be
managed in today’s applications calls for flexible mechanisms for storing such informa-
tion, making it easily and efficiently accessible, and facilitating its change and evolution
over time. The paradigm of graph structured data (GSD) [5] has gained popularity
recently as an alternative to traditional relational databases that provides more flexibility
and thus can overcome the limitations of an a priori imposed rigid structure on the data.
Indeed, differently from relational data, GSD do not require a schema to be fixed a
priori. This flexibility makes them well suited for many emerging application areas such
as managing Web data, information integration, persistent storage in object-oriented
software development, or management of scientific data. Concrete examples of models
for GSD are RDFS [2], object-oriented data models, and XML.

Here we build on recent work that advocates the use of Description Logics (DLs)
for managing change in GSD that happens as the result of (agents or users) executing
actions [4]. We consider GSD understood in a broad sense, as information represented by
means of a node and edge labeled graph, in which the labels convey semantic information.
We identify GSD with the finite structures over which DLs are interpreted, and use DL
knowledge bases as descriptions of constraints and properties of the data. We express
actions using a specially tailored action language in which actions are finite sequences
of (possibly conditional) insertions and deletions performed on the extensions of labels.
For this setting, the static verification problem, which consists on deciding whether the
execution of a given action will preserve some given integrity constraints on any possible
GSD, has been studied in [4]. Here we discuss further problems that can be considered
as variants of planning, such as deciding whether there is a sequence of actions that
leads a given structure into a state where some property (either desired or not) holds,
or whether a given sequence of actions leads every structure into a state where some
property necessarily holds. We develop algorithms for variations of these problems, and
characterize their computational complexity.

We refer the reader to [1] for the extended version of this paper, which also includes
an extensive discussion of related work.

Updating GSD For manipulating GSD we use a specially tailored language [1], in
which a basic action can take, for example, the form (A ⊕ C) for a concept name A
and an arbitrary concept C. Intuitively, when this action is applied to an interpretation

∗ The work has been partially supported by FWF projects T515 and P25518, WWTF
project ICT12-015, EU IP Project Optique FP7-318338, and the Wolfgang Pauli Institute.

(i.e., a GSD instance) I, the content of CI is added to AI . Similarly (A	 C) removes
CI from AI , and there are analogous operations (p ⊕ r) and (p 	 r) on roles. These
basic actions β can be combined using action composition β · α and conditional action
execution K ?α1 ‖ α2. Actions may be non-ground and contain variables, which act as
parameters. The semantics is then given using substitutions in the natural way.

Given a set Act of actions, a finite interpretation I, and a goal KB K, a plan is a
finite sequence of ground instances of actions from Act , whose execution leads from I
to a state I ′ that satisfies K. We allow to introduce fresh values in the data by expanding
in I ′ the domain of I with a finite set of domain elements.

Example 1. The following interpretation I represents (part of) the project database of a
research institute. There are two active projects and three employees working in them.

EmplI = {e1, e3, e7} ActPrjI = {p1, p2} worksForI = {(e1, p1), (e3, p1), (e7, p2)}
PrjI = {p1, p2} FinPrjI = {}

We assume constants pi with pi
I = pi for projects, and analogously constants ei for

employees. The KB K1 expresses constraints on this project database: all projects are
active or finished, the domain of worksFor are the employees, and its range the projects.

(Prjv ActPrj t FinPrj) ∧ (∃worksFor.>v Empl) ∧ (∃worksFor−.>v Prj)

The following goal KB requires that p1 is not an active project, and that e1 is an employee.
Consider the following actions α1 and α2; here ε stands for the empty action. Action
α1 moves p1 from the active to the finished projects, and removes the employees that
work only for p1. Action α2 transfers an employee x from project p1 to project p2, if the
necessary preliminary checks are successful.

Kg=¬(p1:ActPrj) ∧ e1:Empl

α1=ActPrj	{p1} ·FinPrj⊕{p1} ·Empl	∀worksFor.{p1} ·worksFor	worksFor|{p1}
α2=(p2:Prj ∧ (x, p1):worksFor) ?

(
worksFor 	 {(x, p1)} · worksFor ⊕ {(x, p2)}

)
‖ ε

The sequence 〈α′2, α1〉 is a plan for Kg from I, where α′2 is the result of applying to α2

the substitution σ : {x 7→ e1}, that is, parameter x takes the value e1. The interpretation
I ′ that reflects the resulting status of the data looks as follows (note that I ′ |= K1 ∧Kg):

EmplI = {e1, e7} ActPrjI = {p2} worksForI = {(e1, p2), (e7, p2)}
PrjI = {p1, p2} FinPrjI = {p1}

Planning Problems for GSD We define the following planning problems:
(P1) Given a set Act of actions, a finite interpretation I, and a goal KB K, does there

exist a plan for K from I?
(P2) Given a set Act of actions and a pair Kpre , K of formulae, does there exist a

substitution σ and a plan for σ(K) from some finite I with I |= σ(Kpre)?
(P1) is the classic plan existence problem, formulated in the setting of GSD. (P2) also
aims at deciding plan existence, but rather than the full actual state of the data, we have
as an input a precondition KB, and we are interested in deciding the existence of a plan
from some of its models. To see the relevance of (P2), consider the complementary

problem: a ‘no’ instance of (P2) means that, from every relevant initial state, (undesired)
goals cannot be reached. For instance, Kpre = Kic ∧ x : FinPrj and K = x : ActPrj
may be used to check whether, starting with a GSD that satisfies the integrity constraints
Kic and contains some finished project p, it is possible to make p an active project again.

Unfortunately, these problems are undecidable already for DL-Lite KBs and a quite
restricted form of actions. For (P1), the intuition behind this is that we do not know
how many fresh objects we need to add to the domain of I. If we put a bound on the
number of these fresh objects, we regain decidability. (P2) remains undecidable even if
the domain is fixed, but it becomes decidable if we place a bound on the length of plans.
(P1b) Given a set Act of actions, a finite interpretation I, a goal KB K, and a positive

integer k, does there exist a plan for K from I such that at most k elements are
added to the domain of I?

(P2b) Given a set of actions Act , a pair Kpre ,K of formulae, and a positive integer k,
does there exist a substitution σ and a plan of length at most k for σ(K) from
some finite interpretation I with I |= σ(Kpre)?

In what follows, we assume that the integers k given as bounds are encoded in unary. The
problem (P1b) is PSPACE-hard already for settings more restricted than DL-Lite, and it can
be solved in polynomial space even for the very expressiveALCHOIQbr (an extension
of ALCHOIQ with further role constructors and Boolean KBs). Note that the problem
is not harder than deciding plan existence in standard planning formalisms such as
propositional STRIPS [3]. The problem (P2b) is NEXPTIME-complete forALCHOIQbr,
and the complexity drops to NP-complete for DL-Lite and suitably restricted actions.

Next we consider problems that are related to ensuring that plans always achieve
a goal K, given a possibly incomplete description Kpre of the initial data. They are
variants of the so-called conformant planning, which deals with incomplete information.
The first such problem is to ‘certify’ that a candidate plan is always a plan for the goal.
(C) Given a sequence P of actions and formulae Kpre , K, is σ(P) a plan for σ(K) from

every finite interpretation I with I |= σ(Kpre), for every substitution σ?
Finally, we are interested in deciding the existence of a plan that always achieves

the goal, for every possible state satisfying the precondition. Solving this problem
corresponds to the automated synthesis of a program for reaching a certain condition.
This is formalized via the following problems:
(S) Given a set Act of actions and formulae Kpre , K, does there exist a sequence P

of actions from Act such that σ(P) is a plan for σ(K) from every finite I with
I |= σ(Kpre), for every substitution σ?

(Sb) Given a set Act of actions, formulae Kpre ,K, and a positive integer k, does there
exist a sequence P of actions from Act such that σ(P) is a plan for σ(K) of length
at most k, from every finite I with I |= σ(Kpre), for every substitution σ?

Problem (S) is undecidable already for DL-Lite. For ALCHOIQbr, (C) and (Sb) are
complete for coNEXPTIME. For DL-Lite, (C) is complete for coNP and (Sb) for NPNP.

Conclusions We believe this work provides powerful tools for analyzing the effects of
executing complex actions on GSD in the presence of integrity constraints expressed
in DLs. Interesting lines for further research are developing practicable algorithms and
identifying meaningful restricted fragments of lower complexity, in particular tractable
fragments.

References

1. S. Ahmetaj, D. Calvanese, M. Ortiz, and M. Šimkus. Managing change in graph-structured
data using description logics. In Proc. of AAAI, 2014. Long version with proofs available at
http://arxiv.org/abs/1404.4274.

2. D. Brickley and R. V. Guha. RDF vocabulary description language 1.0: RDF Schema. W3C
Recommendation, W3C, Feb. 2004. http://www.w3.org/TR/rdf-schema/.

3. T. Bylander. The computational complexity of propositional STRIPS planning. AIJ, 69:165–
204, 1994.

4. D. Calvanese, M. Ortiz, and M. Šimkus. Evolving graph databases under description logic
constraints. In Proc. of DL 2013, volume 1014 of CEUR, ceur-ws.org, pages 120–131,
2013.

5. S. Sakr and E. Pardede, editors. Graph Data Management: Techniques and Applications. IGI
Global, 2011.

http://arxiv.org/abs/1404.4274
http://www.w3.org/TR/rdf-schema/
ceur-ws.org

	Planning Problems for Graph Structured Data in Description Logics

