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Abstract. Several attempts have been made to develop similarity mea-
sures for ontologies. Motivated by finding problems in existing measures,
we design a new family of measures to address these problems. We carry
out an empirical study to explore how good the new measures are and to
investigate how likely it is to encounter specific task-oriented problems
when using a bad similarity measure.

1 Introduction

The process of assigning a numerical value reflecting the degree of resemblance
between two ontology concepts or the so called conceptual similarity measure-
ment is a core step in many ontology-related applications (e.g., ontology align-
ment [7], ontology learning [2]). Several attempts have been made to develop
methods for measuring conceptual similarity in ontologies [22,32,23,20,4]. In
addition, the problem of measuring similarity is well-founded in psychology and
a number of similarity models have been already developed [6, 30,26, 19,29, 8,
12]. Rather than adopting a psychological model for similarity as a foundation,
we noticed that some existing similarity measures for ontologies are ad-hoc and
unprincipled. This can negatively affect the application in which they are used.
However, in some cases, depending on how simple the ontology /task is, using a
computationally expensive “good” similarity measure is no better than using a
cheap “bad” measure. Thus, we need to understand the computational cost of
the similarity measure and the cases in which it succeeds/fails. Unfortunately,
to date, there has been no thorough investigation of similarity measures with
respect to these issues.

For this investigation, we use an independently motivated corpus of ontologies
(BioPortal! library) which contains over 300 ontologies that are used by the
biomedical community which is a community that has a high interest in the
similarity measurement problem [24, 31].

To understand the major differences between similarity measures w.r.t. the
task in which they are involved in, we structure the discussion around the fol-
lowing three tasks:

— Taskl: Given a concept C, retrieve all concepts D s.t. Similarity(C, D) > 0.
— Task2: Given a concept C, retrieve the N most similar concepts.

! http:/ /bioportal.bioontology.org/



— Task3: Given a concept C and some threshold A, retrieve all concepts D s.t.
Similarity (C, D) > A.

We expect most similarity measures to behave similarly in the first task be-
cause we are not interested in the particular similarity values nor any particular
ordering among the similar concepts. However, the second task gets harder as NV
gets smaller. In this case, a similarity measure that underestimates the similarity
of some very similar concepts and overestimates the similarity of others can fail
the task. In the third task, the actual similarity values matter. Hence, using the
most accurate similarity measure is essential.

2 Preliminaries

We assume the reader to be familiar with DL ontologies. In what follows, we
briefly introduce the relevant terminology. For a detailed overview, the reader
is referred to [1]. The set of terms, i.e., concept, individual and role names, in
an ontology O is referred to as its signature, denoted O. Throughout the paper,
we use N¢, Ni for the sets of concept and role names respectively and C, to
denote a set of possibly complex concepts of a concept language L£(X) over a
signature X' and we use the usual entailment operator |=.

3 Desired properties for similarity measures

Various psychological models for similarity have been developed (e.g., Geometric
[26,19], Transformational [17,8] and Features [29] models). Due to the richness
of ontologies, not all models can be adopted when considering conceptual simi-
larity in ontologies. This is because many things are associated with a concept in
an ontology (e.g., atomic subsumers/subsumees, complex subsumers/subsumees,
instances, referencing axioms). Looking at existing approaches for measuring
similarity in DL ontologies, one can notice that approaches which aim at pro-
viding a numerical value as a result of the similarity measurement process are
mainly founded on feature-based models [29], although they might disagree on
which features to consider.

In what follows, we concentrate on feature-based notions of similarity where
the degree of similarity Scp between objects C, D depends on features common
to C' and D, unique features of C' and unique features of D. Considering both
common and distinguishing features is a vital property of the features model.

Looking at existing approaches for measuring similarity in ontologies, we find
that some of these approaches consider common xor unique features (rather than
both) and that some approaches consider features that some instances (rather
than all) of the compared concepts have. To account for all the features of a
concept, we need to look at all (possibly complex) entailed subsumers of that
concept. To understand these issues, we present the following example:

Example 1 Consider the ontology:

{Animal C Organism M Jeats. T, Plant C Organism,
Carnivore C Animal MYeats.Animal, Herbivore C Animal MVeats.Plant,
Omnivore C Animal M Jeats. Animal M Jeats. Plant}



Please note that our “Carnivore” is also known as obligate carnivore. A
good similarity function Sim(-) is expected to derive that Sim(Carnivore, Om-
nivore) > Sim(Carnivore, Herbivore) because the first pair share more com-
mon subsumers and have fewer distinguishing subsumers. On the one hand
Carnivore, Herbivore and Omnivore are all subsumed by the following com-
mon subsumers (abbreviated for readability): {T,Org, A, Je.T}. In addition,
Carnivore and Omnivore share the following common subsumer: {Je.A}.
On the other hand, they have the following distinguishing subsumer: {Je.P}
while Carnivore and Herbivore have the following distinguishing subsumers:
{3e.P,Ve.P,3e.A,Ve.A}. Here, we have made a choice to ignore (infinitely) many
subsumers and only consider a select few. Clearly, this choice has an impact
on Sim(-). Details on such design choices are discussed later. Note also that
we only considered subsumers rather than subsumees. This is because common
subsumees do not necessarily reflect commonalities. For example, consider the
concept Jdigests.Insect which is a subsumee of both Animal and Plant. How-
ever, this concept does not reflect commonalities of animals and plants.

We refer to the property of accounting for both common and distinguishing
features as rationality. In addition, the related literature refer to some other
properties for evaluating similarity measures (e.g., equivalence closure, symme-
try, triangle inequality, monotonicity, subsumption preservation, structural de-
pendence). For a detailed overview, the reader is referred to [4, 16].

4 Overview of existing approaches

We classify existing similarity measures into two dimensions as follows.

Taxonomy vs. ontology based measures Taxonomy-based measures [22, 32,
23,18, 14] only consider the taxonomic representation of the ontology (e.g., for
DLs, we could use the inferred class hierarchy); hence only atomic subsumptions
are considered (e.g., Carnivore T Animal). In fact, this can be considered
an approximated solution to the problem which might be sufficient in some
cases. However, the user must be aware of the limitations of such approaches.
For example, direct siblings are always considered equi-similar although some
siblings might share more features/subsumers than others.

Ontology-based measures [4, 13, 16] take into account more of the knowledge
in the underlying ontology (e.g., Carnivore C Veats.Animal). These measures
can be further classified into (a) structural measures, (b) interpretation-based
measures or (c¢) hybrid. Structural measures [13, 16] first transform the compared
concepts into a normal form (e.g., ££ normal form or ALCN disjunctive nor-
mal form) and then compare the syntax of their descriptions. To avoid being
purely syntactic, they first unfold the concepts w.r.t. the T'Box which limits the
applicability of such measures to cyclic terminologies. Some structural measures
[16] are applicable only to inexpressive DLs (e.g., ££) and it is unclear how they
can be extended to more expressive DLs. Interpretation-based measures mainly
depend on the notion of canonical models (e.g., in [4] the canonical model based
on the ABoz is utilised) which do not always exist (e.g., consider disjunctions).



Intensional vs. extensional based measures Intensional-based measures
[22,32,13,16] exploit the terminological part of the ontology while extensional-
based measures [23, 18, 14, 4] utilise the set of individual names in an ABox or
instances in an external corpus. Extensional-based measures are very sensitive
to the content under consideration; thus, adding/removing an individual name
would change similarity measurements. These measures might be suitable for
specific content-based applications but might lead to unintuitive results in other
applications because they do not take concept definitions into account. Moreover,
extensional-based measures cannot be used with pure terminological ontologies
and always require representative data.

5 Detailed inspection of some existing measures

After presenting a general overview of existing measures, we examine in detail
some measures that can be considered “cheap” options and explore their possible
problems. In what follows, we use Satomic(C) to denote the set of atomic sub-
sumers for concept C'. We also use Comatomic(C, D), Diff atomic(C, D) to denote
the sets of common and distingushing atomic subsumers respectively.

Rada et al. This measure utilises the length of the shortest path [22] between
the compared concepts in the inferred class hierarchy. The essential problem here
is that the measure takes only distinguishing features into account and ignores
any possible common features.

‘Wu and Palmer. To account for both common and distinguishing features,
Wu & Palmer [32] presented a different formula for measuring similarity, as
follows:

— 2'|ComAtomic(CvD)|
Swu & Patmer (C; D) = 2 ]Com atomic (C;D)|+|Diff Avomic (O, D)

Although this measure accounts for both common and distinguishing fea-
tures, it only considers atomic concepts and it is more sensitive to commonalties.

Resnik and other IC measures. In information theoretic notions of simi-
larity, the information content ICc = —logP¢ of a concept C' is computed based
on the probability (P¢) of encountering an instance of that concept. For exam-
ple, Pr =1 and ICt = 0 since T is not informative. Accordingly, Resnik [23]
defines similarity Sgresnik(C, D) as:

SResnik(C; D) = ICLCS
where LCS is the least common subsumer of C' and D (i.e., the most specific
concept that subsumes both C' and D). IC measures take into account features
that some instances of C' and D have, which are not necessarily neither common
nor distinguishing features of all instances of C' and D. In addition, Resnik’s
measure in particular does not take into account how far the compared concepts
are from their least common subsumer. To overcome this problem, two [18, 14]
other IC-measures have been proposed:

_ 2-ICLes
(D)= e 31,

SJiang&Conrath(O, D) =1- ICC + ICD —2- ICLCS



6 A new family of similarity measures

Following our exploration of existing measures and their associated problems, we
present a new family of similarity measures that addresses these problems. The
new measures adopt the features model where the features under consideration
are the subsumers of the concepts being compared. The new measures are based
on Jaccard’s similarity coefficient [11] which has been proved to be a proper
metric (i.e., satisfies the properties: equivalence closure, symmetry and triangle
inequality). Jaccard’s coefficient, which maps similarity to a value in the range
[0,1], is defined as follows (for sets of “features” A’ B’ of A,B, i.e., subsumers of
A and B):

A'NB’
I14.5) = 35

We aim at similarity measures for general OWL ontologies and thus a naive
implementation of this approach would be trivialised because a concept has in-
finitely many subsumers. To overcome this issue, we present some refinements for
the similarity function in which we do not simply count all subsumers but con-
sider subsumers from a set of (possibly complex) concepts of a concept language
L. More precisely, for concepts C, D an ontology O and a concept language L,
we set:

S(C,0,L)={DeL(0)]| OE=CLC D}
Com(C,D,0,L)=S(C,0,£)NS(D,0, L)
Union(C, D, 0, L) = 5(C,0,L)U S(D,0, L)
|Com(C, D, 0, L)|
|Union(C, D, O, L)]

Sim(C, D, 0, L) =

To design a new measure, it remains to specify the set £. In what follows, we
present some examples:

AtomicSim(C, D) = Sim(C, D, O, Latomic(O)), and Latomic(O) = O N Ne..

SubSim(C, D) = Sim(C, D, O, Lsup(0)), and Lsup(O) = Sub(O).

GrSim(C,D) = Sim(C,D, 0, L5(0)), and Lg(O) ={E | E € Sub(O)
or E = 3r.F, for some r € ON Ny and F € Sub(O)}.

where Sub(O) is the set of concept expressions in O. AtomicSim(-) captures
taxonomy-based measures since it considers atomic concepts only. The rationale
of SubSim(-) is that it provides similarity measurements that are sensitive to
the modeller’s focus. It also provides a cheap (yet principled) way for measuring
similarity in expressive DLs since the number of candidates is linear in the size
of the ontology. To capture more possible subsumers, one can use GrSim(-). We
have chosen to include only grammar concepts which are subconcepts or which
take the form 3r.F' to make experiments in the Empirical inspection Section
more manageable. However, the grammar can be extended easily.



7 Approximations of similarity measures

Some of the presented examples for similarity measures might be practically
inefficient due to the large number of candidate subsumers. For this reason, it
would be nice if we can explore and understand whether a “cheap” measure can
be a good approximation for a more expensive one. We start by characterising
the properties of an approximation in the following definition.

Definition 1 Given two similarity functions Sim(-),Sim/(-), and an ontology
O, we say that:

— Sim!(-) preserves the order of Sim(-) if VAy, By, Ay, By € O: Sim(A1, By) <
Sim(AQ,BQ) — Sim’(Al,Bl) < Sim/(AQ,BQ). _
— Sim/(-) approximates Sim(-) from above if VA, B € O: Sim(A,B) <
(A, B). N
— Sim/(-) approximates Sim(-) from below if VA, B € O: Sim(A,B) >
m’(

Consider AtomicSim(-) and SubSim(-). The first thing to notice is that the
set of candidate subsumers for the first measure is actually a subset of the set
of candidate subsumers for the second measure (O N No C Sub(O)). However,
we need to notice also that the number of entailed subsumers in the two cases
need not to be proportionally related. For example, if the number of atomic can-
didate subsumers is n and two compared concepts share 3 common subsumers.
We cannot conclude that they will also share half of the subconcept subsumers.
They could actually share all or none of the complex subsumers. Therefore, the
order-preserving property need not be always satisfied. As a concrete example,
let the number of common and distinguishing atomic subsumers for C and D
to be 2 and 4 respectively (out of 8 atomic concepts) and let the number of
their common and distinguishing subsoncept subsumers to be 4 and 6 respec-
tively (out of 20 subconcepts). Let the number of common and distinguishing
atomic subsumers for C' and E to be 4 and 4 respectively and let the number
of their common and distinguishing subsoncept subsumers to be 4 and 8 re-
spectively. In this case, AtomicSim(C,D) = % = 0.33, SubSim(C,D) = 14—0 =
0.4, AtomicSim(C,E) = 5 = 0.5, SubSim(C,E) = -5 = 0.33. Notice that
AtomicSim(C, D) < AtomicSim(C, E) while SubSim(C, D) > SubSim(C, E).
Here, AtomicSim(-) is not preserving the order of SubSim(-) and AtomicSim(-)
underestimates the similarity of C,D and overestimates the similarity of CE
compared to SubSim(-).

A similar argument can be made to show that entailed subconcept subsumers
are not necessarily proportionally related to the number of entailed grammar-
based subsumers. We conclude that the above examples of similarity measures
are, theoretically, none-approximations of each other. In the next section, we are
interested in knowing the relation between these measures in practice.

8 Empirical inspection

Following our conceptual discussion on similarity measures in the previous sec-
tions, we explore the behaviour of some similarity measures in practice. Given a



range of similarity measures with different costs, we want to know how good an
expensive measure is, its cost and the cases in which we are required to pay that
cost to get a reasonable similarity measurement. Also we want to know how bad
a cheap measure is, the specific problems associated with it and how likely it is
for a cheap measure to be a good substitute for more expensive measures.

The empirical inspection constitutes two parts. First, we carry out a compari-
son between the three measures GrSim(-), SubSim(-) and AtomicSim(-) against
human experts-based similarity judgments. In [21], IC-measures along with Rada
measure [22] has been compared against human judgements using the same data
set which is used in the current study. The previous study [21] has found that
IC-measures are worse than Rada measure so we only include Rada measure in
our comparison and exclude IC-measures. We also include another path-based
measure with is Wu & Palmer [32]. Secondly, we further study in detail the be-
haviour of our new family of measures in practice. GrSim(-) is considered as
the expensive and most precise measure in this study. We use AtomicSim(-) as
the cheap measure as it only considers atomic concepts as candidate subsumers.
Studying this measure can allow us to understand the problems associated with
taxonomy-based measures as they all consider atomic subsumers only. Recall
that taxonomy-based measures suffer from other problems that were presented
in the conceptual inspection section. Hence, AtomicSim(-) can be considered the
best candidate in its class since it does not suffer from these problems. We also
consider SubSim(-) as a cheaper measure than GrSim(-) and more precise than
AtomicSim(-) and we expect it to be a better approximation for GrSim(-) com-
pared to AtomicSim(-). We excluded from the study instance-based measures
since they require representative data which is not guaranteed to be present in
our corpus of ontologies.

We have shown in the previous section that the above three measures are
not proper approximations of each other. However, this might be not the case
in practice as we will explore in the following experiment. To study the relation
between the different measures in practice, we examine the following properties:
(1) order-preservation, (2) approximation from above (3) approximation from
below, (4) correlation and (5) closeness. With respect to these five properties, we
study the relation between AtomicSim(-) and SubSim(-) and refer to this as AS,
the relation between AtomicSim(-) and GrSim(-) and refer to this as AG, the
relation between SubSim(-) and GrSim(-) and refer to this as SG. Properties 1-3
are defined in Definition 1. For correlations, we calculate Pearson’s coefficient for
the relation between each pair of measures. Finally, two measures are considered
close if the following property holds: |Sim1(C, D) — Sima(C, D)| < A where
A = 0.1 in the following experiment. We also compare the measures to human-
based similarity judgements to confirm that the expensive measures can be more
precise than the cheap ones.

8.1 Infrastructure

With respect to hardware, we used the following machine: Intel Quad-core i7
2.4GHz processor, 4 GB 1333 MHz DDR3 RAM, running Mac OS X 10.7.5.



As for the software we use OWL API v3.4.4 [9]. To avoid runtime errors
caused by using some reasoners with some ontologies, a stack of freely available
reasoners were utilised: FaCT++ [28], HermiT [25], JFact,? and Pellet [27].

8.2 Test data

The BioPortal corpus: The BioPortal library of biomedical ontologies has
been used for evaluating different ontology-related tools such as reasoners [15],
module extractors [5], justification extractors [10], to name a few. The corpus
contains 365 user contributed ontologies (as in October 2013) with varying char-
acteristics such as axiom count, concept name count and expressivity.

Ontology selection: A snapshot of the BioPortal corpus from November
2012 was used. It contains a total of 293 ontologies. We excluded 86 ontologies
which have only atomic subsumptions as for such ontologies the behaviour of the
considered measures will be identical, i.e., we already know that AtomicSim(-) is
good and cheap. We also excluded 38 more ontologies due to having no concept
names or due to run time errors. This has left us with a total of 169 ontologies.

Sampling: Due to the large number of concept names (565,661) and difficulty
of spotting interesting patterns by eye, we calculated the pairwise similarity for
a sample of concept names from the corpus. The size of the sample is 1,843
concept names with 99% confidence level. To ensure that the sample encompasses
concepts with different characteristics, we picked 14 concepts from each ontology.
The selection was not purely random. Instead, we picked 2 random concept
names and for each random concept name we picked some neighbour concept
names (i.e., 3 random siblings, atomic subsumer, atomic subsumee, sibling of
direct subsumer). This choice was made to allow us to examine the behaviour
of the considered similarity measures even with special cases such as measuring
similarity among direct siblings.

8.3 Experiment workflow

Module extraction: After classifying the ontology, we pick a sample of 14
concept names. The selected 14 concept names are used as a seed signature
for extracting a L-module [3]. For optimisation, rather than working on the
whole ontology, the following steps are performed on the extracted module. One
of the important properties of 1-modules is that they preserve almost all the
related subsumptions. There are 3 cases in which a 1-module would miss some
subsumers. The first case occurs when O | C CE Vs.X and O = C C Vs. L .
The second case occurs when O |= C C Vs.X and O |= Vs.X = T. The third
case occurs when O = C C Vs. X and O £ C C Js.X. Since in all three cases
Vs.X is a vacuous subsumer of C', we chose to ignore these, i.e., use |-modules
without taking special measures to account for them.

Candidate subsumers extraction: In addition to extracting all atomic
concepts in the 1 -module we recursively use the method getNestedClassExpres-
sions() to extract all subconcepts from all axioms in the L-module. The extracted
subconcepts are used to generate grammar-based concepts. For practical reasons,

2 http://jfact.sourceforge.net/



we only generate concepts taking the form 3r.D s.t. D € Sub(O) and r a role
name in the signature of the extracted l-module. Focusing on existential re-
strictions is justifiable by the fact that they are dominant in our corpus (77.89%
of subconcepts) compared to other complex expression types (e.g., universal re-
strictions: 2.57%, complements: 0.14%, intersections: 13.89, unions: 2.05%).

Testing for subsumption entailments: For each concept C; in our sample
and each candidate subsumer S}, we test whether the ontology entails that C; C
S;. If the entailment holds, subsumer S; is added to the set of C;’s subsumers.

Calculating pairwise similarities: The similarity of each distinct pair in
our sample is calculated using the three measures.

Comparison to human judgements: We picked one ontology (SNOMED-
CT) from BioPortal corpus to carry out a comparison between the three measures
against human experts-based similarity judgments. The reason for choosing this
particular ontology is the availability of data showing experts’ judgements for
the similarity between some concepts from that ontology. In [21], the similarity
of 30 pairs of clinical terms is rated by medical experts. We include in our
study 19 pairs out of the 30 pairs after excluding pairs that have at least one
concept that has been described as an ambiguous concept in the ontology (i.e.,
is a subsumee of the concept ambiguous_concept). In [21], similarity values for
two groups of experts (physicians and coders) are presented. We consider the
average of physicians and coders similarity values in the comparison. For details
regarding the construction of this dataset, the reader is referred to [21].

8.4 Results and discussion

How good is the expensive measure? Not surprisingly, GrSim and SubSim
had the highest correlation values with experts’ similarity (Pearson’s correlation
coefficient = 0.87,p < 0.001). Secondly comes AtomicSim (r = 0.86). Finally
comes Wu & Palmer then Rada (r = 0.81, » = 0.64 respectively). Clearly, the
new expensive measures are more correlated with human judgements which is ex-
pected as they consider more of the information in the ontology. The differences
in correlation values might seem to be small but this is expected as SNOMED
is an £L ontology and we expect differences to grow as expressivity increases.

Cost of the expensive measure: One of the main issues we want to explore
in this study is the cost (in terms of time) for similarity measurement in general
and the cost of the most expensive similarity measure in particular.

The average time per ontology taken to calculate grammar-based pairwise
similarities was 2.3 minutes (standard deviation ¢ = 10.6 minutes, median
m = 0.9 seconds) and the maximum time was 93 minutes for the Neglected Trop-
ical Disease Ontology which is a SRZQ ontology with 1237 logical axioms, 252
concept names and 99 role names. For this ontology, the cost of AtomicSim(-)
was only 15.545 sec and 15.549 sec for SubSim(-). 9 out of 196 ontologies took
over 1 hour to be processed. One thing to note about these ontologies is the
high number of logical axioms and role names. However, these are not necessary
conditions for long processing times. For example, the Family Health History
Ontology has 431 role names and 1103 logical axioms and was processed in less
than 13 sec. Clearly, GrSim(-) is far more costly than the other two measures.



This is why we want to know how good/bad a cheaper measure can be. These
reported times include module extraction and ontology classification times.

Approximations and correlations: Regarding the relations (A4S, AG, SG)
between the three measures, we want to find out how frequently can a cheap
measure be a good approximation for/have a strong correlation with a more
expensive measure. Recall that we have excluded all ontologies with only atomic
subsumptions from the study. However, in 12% of the ontologies the three mea-
sures were perfectly correlated (r = 1,p < 0.001) mostly due to having only
atomic subsumptions in the extracted module (except for three ontologies which
have more than atomic subsumptions). In addition to these perfect correlations
for all the three measures, in 11 more ontologies the relation SG was a per-
fect correlation (r = 1,p < 0.001) and AS and AG were very highly correlated
(r > 0.99,p < 0.001). These perfect correlations indicate that, in some cases,
the benefit of using an expensive measure is totally neglectable.

In about fifth of the ontologies (20.47%), the relation SG was a very high
correlation (1 > r > 0.99, p < 0.001) within which 5 ontologies were 100% order-
preserving and approximating from below. In this category, in 22 ontologies the
relation SG was 100% close. As for the relation AG, in only 8% of the ontologies
the correlation was very high.

In nearly half of the ontologies (48.54%), the correlation for SG was consid-
ered medium (0.99 > r > 0.90,p < 0.001). And in 11% of the ontologies, the
correlation for SG was considered low (r < 0.90,p < 0.001) with (r = 0.63) as
the lowest correlation value. In comparison, the correlation for AG was consid-
ered medium in 38% of the ontologies and low in 32.75% of the ontologies.

As for the order-preservations, approximations from above/below and close-
ness for the relations AG and SG, we summarise our findings in the following
table. Not surprisingly, SubSim(-) is more frequently a better approximation
to GrSim(-) compared to AtomicSim(-). Although one would expect that the

Order-preservations| Approx. from below|Approx. from above|Closeness
AG 32 32 37 28
SG 44 49 42 56
Table 1: Ontologies satisfying properties of approximation

properties of an ontology have an impact on the relation between the differ-
ent measures used to compute the ontology’s pairwise similarities, we found no
indicators. With regard to this, we categorised the ontologies according to the
degree of correlation (i.e., perfect, high, medium and low correlations) for the
S relation. For each category, we studied the following properties of the ontolo-
gies in that category: expressivity, number of logical axioms, number of concept
names, number of role names, length of the longest axiom, number of subconcept
expressions. For ontologies in the perfect correlation category, the important fac-
tor was having a low number of subconcepts. In this category, the length of the
longest axiom was also low (< 11, compared to 53 which is the maximum length
of the longest axiom in all the extracted modules from all ontologies). In addi-
tion, the expressivity of most ontologies in this category was AL. Apart from
this category, there were no obvious factors related to the other categories.
How bad is a cheap measure? To explore how likely it is for a cheap
measure to encounter problems (e.g., fail one of the tasks presented in the intro-



duction), we examine the cases in which a cheap measure was not an approxima-
tion for the expensive measure. AG and SG were not order-preserving in 80%
and 73% of the ontologies respectively. Also, they were not approximations from
above nor from below in 72% and 64% of the ontologies respectively and were
not close in 83% and 66% of the ontologies respectively.

If we take a closer look at the African Traditional Medicine ontology for which
the similarity curves are presented in Figure 1, we find that SG is 100% order-
preserving while AG is only 99% order-preserving. Note that for presentation
purposes, only part of the curve is shown. Both relations were 100% approxi-
mations from below. As for closeness, SG was 100% close while AG was only
12% close. In order to determine how bad are AtomicSim(-) and SubSim(-) as
cheap approximations for GrSim(-), we study the behaviour of these measures
w.r.t. the three tasks presented in the introduction. Both cheap measures would
succeed in performing task 1 while only SubSim(-) can succeed in task 2 (1%
failure chance for AtomicSim(-)). For task 3, there is a higher failure chance for
AtomicSim(-) since closeness is low (12%).
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As another example, we examine the Platynereis Stage Ontology for which
the similarity curves are presented in Figure 2. In this ontology, both AG and
SG are 75% order-preserving. However, AG was 100% approximating from above
while SG was 85% approximating from below (note the highlighted red spots).
In this case, both AtomicSim(-) and SubSim(-) can succeed in task 1 but not
always in tasks 2 & 3 with SubSim(-) being worse as it can be overestimating
in some cases and underestimating in other cases.

In general, both measures are good cheap alternatives w.r.t. task 1. However,
AtomicSim(-) would fail more often than SubSim(-) when performing tasks 2/3.

9 Conclusion and future research directions

In conclusion, no obvious indicators were found to inform the decision of choosing
between a cheap or expensive measure based on the properties of an ontology.
However, the task under consideration and the error rate allowed in the intended
application can help. In general, SubSim(-) seems to be a good alternative to the
expensive GrSim(-). First, it is restricted in a principled way to the modeller’s
focus. Second, it has less failure chance in practise compared to AtomicSim(-).

As for our future research directions, we aim to extend the study by looking
deeply at the possible causes of failure and run the measures on some ontologies
as they are instead of some modules of them to see how well they scale.
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