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1 Introduction

Temporally enhanced conceptual models have been devetopeelp designing temporal
databases [12]. In this paper we deal with Extended Entilafidonship (EER) diagrams
used to model temporal databases. The temporal conceptds! &R has been intro-
duced both tdormally clarify the meaning of the various temporal constructs apge in
the literature [2, 4], and to check the possibility to penforasoningon top of temporal
schemas [5]€R v supports valid time for entities, attributes, and relattps in the line of
TIMEER [10] and ERT [15], while supporting dynamic constrainis éntities as presented
in MADS [14]. ERy is able to distinguish betweemapshotonstructs—i.e. each of their
instances has a global lifespan—aedporaryconstructs—i.e. each of their instances have
a limited lifespan. Dynamic constructs capture disgect migrationfrom a source entity to a
target entity.

The contribution of this paper is twofold. Moving from theriiwal characterization of
ERyr given in [4] we clarify the relevant reasoning problems famporal EER diagrams. In
particular, we distinguish between six different reasgrservices, introducing two new ser-
vices for both entities and relationshipgizeness satisfiability-i.e. whether an entity or rela-
tionship admits a non-empty extension infinitely often ia titure—andylobal satisfiability—
i.e. whether an entity or relationship admits a non-emptgresion at all points in time. After
a systematic definition of the various reasoning problemshsa show that all the satisfia-
bility problems (i.e. schema, entity and relationshipsfatbility problems) together with the
subsumption problem (i.e. checking whether two entitieetationships denote one a subset
of the other so that there is an implicgA link between them) can be mutually reduced to
each other. On the other hand, checking whether a schagitally impliesanother schema
is shown to be the more general reasoning service.

The second contribution is to prove that reasoning on teatgonceptual models is unde-
cidable provided the diagrams are able to: (a) Distinguéttvben temporal and non-temporal
constructs; (b) Represedynamic constraint®etween entities, i.e. entities whose instances

*The author has been partially supported by the EU projests§ie, KnowledgeWeb, and Interop. This paper
is a shorter version of [1].

'EER is the standard entity-relationship data model, eadchith IsA links, generalized hierarchies with
disjoint and covering constraints, and full cardinalitynstraints.
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VR.C'|  (univ. quantifier) (AR.C)TY = {a € AT | I.RT® (a,b) A CT® (b)}
OTC|  (Sometime) (OTC)*® = {a e AT | T > t.CT"(a)}

O*fC|  (Everytime) (OtC)T® = {a e AT | Vo > t.CT™)(a)}

Figure 1: Syntax and Semantics for td&€C¢ Description Logic

migrate to other entities. To the best of our knowledge, ihibe first time such a result is
proved. Indeed, the result presented in [5] showed&hat diagrams can be embedded into
the temporal description logic (DLPLR s—whereld, S extendDLR with the until and
sincetemporal modalities—and that reasonindd R, s was undecidable. Instead, here we
prove that even reasoning just 8Ry schemas is undecidable. The undecidability result is
proved via a reduction of the Halting Problem with a techeigimilar to [9]. In particular,
we proceed by first showing that the halting problem can bedstt as a Knowledge Base
(KB) in ALCr—whereF extendsALC with thefuturetemporal modality—and then proving
that such a KB indLCg can be captured by &Ry diagram.

The paper is organized as follows. The temporal BLCg and the conceptual model
ERyr are formally presented in Sections 2 and 3, respectivelye VEttious reasoning ser-
vices for temporal conceptual modeling are defined in Secfiand their equivalence is
proved. That reasoning in presence of dynamic constrantsdecidable is proved in Sec-
tion 5.

2 The Temporal Description Logic

In this Section we introduce thd £LCr DL [16, 3, 9] as a the tense-logical extension of
ALC. Basic types ofALCr areconceptsandroles According to the syntax rules of Figure 1,
ALCE conceptsare built out ofatomic conceptandatomic roles Tense operators are added
for concepts: >+ (sometime in the future) and™ (always in the future). Furthermore, while
tense operators are allowed only at the level of concepts—mno temporal operators are
allowed on roles—we will distinguish between so calleda—R £—and globaRG—
roles.

Let us now consider the formal semantics4£Cr. A temporal structurd” = (7,, <) is
assumed, wherg, is a set of time points an is a strict linear order ofi,—7 is assumed
to be isomorphic to eithefZ, <) or (N, <). An ALCg temporal interpretationover 7 is
a triple of the formZ = (7, A%, .Z()), whereAZ is non-empty set of objects an8(®) an
interpretation functiorsuch that, for every € 7, every concepf’, and every role?, we have
cI® c AT and RZ® C AZ x AZ. Furthermore, ifR € RG, then,Vt,,ty € T.RZ(t) =
RZ(2) The semantics aflLCF concepts is defined in Figure 1.



A knowledge baséB) in this context is a finite sef of terminological axiom®f the
form C C D. An interpretationZ satisfiesC' C D iff the interpretation ofC is included in
the interpretation oD at all time, i.e.CZ® C DI® forallt € 7. A knowledge bas& is
satisfiableif there is a temporal interpretatidh that satisfies every axiom . X logically
impliesan axiomC' C D (written X = C C D) if C C D is satisfied by every model af.
A conceptC' is satisfiable, given a knowledge basgif there exists a moddl of X such that
CT®) £ (for somet € T,i.e.X £ CC L.

3 Temporal Conceptual Modeling

In this Section, the temporal EER mod&R .y is briefly introduced.£Ry 1 supports valid
time for entities, attributes, and relationships in thes liof TIMEER [10] and ERT [15],
while supporting dynamic constraints for entities as pnesgtin MADS [14].ERy 1 is able
to distinguish betweesnapshot(see the consensus glossary [11] for the terminology used)
constructs—i.e. each of their instances has a global Hfespemporary constructs—i.e.
each of their instances have a limited lifespan—oplicitly temporalconstructs—i.e. their
instances can have either a global or a temporary existdmaetemporal markss (snapshot)
andvT (valid time), are introduced iRy to capture such temporal behavior.

Dynamic constructs capture thbject migrationfrom a source entity to a target entity. If
there is adynamic extensiobetween a source and a target entity (representé®in; by a
dotted link labeled witlbEx) models the case where instances of the source evigtually
become instances of the target entity. On the other hadgnhamic persistencfrepresented
in ERyr by a dotted link labeled witlPER) models the dual case of instangeersistently
migrating to a target entity (for a complete introduction&®Ry 1 with a worked out example
see [4]).

ERy is equipped with both a linear and a graphical syntax aloriy smodel-theoretic
semantics as a temporal extension of the EER semantics féseRting the€ Ry linear
syntax, we adopt the following notation: given two saisY’, an X-labeledtuple overY is
a function fromX to Y’; the labeled tupld” that maps the sdftzy,...,z,} C X to the set
{y1,...,yn} C Y isdenoted by(z1 : y1,..., 2, : yn), @andT[z;] = y;. AN ERyp SChema is
a tuple:

Y = (£,REL,ATT,CARD, ISA, DISJ, COVER, S, T, KEY, DEX, PER), such that:

L is a finite alphabet partitioned into the sets:(entity symbols), A (attribute symbols),
R (relationship symbols),i (role symbols), andD (domainsymbols). £ is further parti-
tioned into: a se€® of snapshot entitiegthe s-markedentities in Figure 2), a sef! of
Implicitly temporal entitiegthe unmarkedentities in Figure 2), and a séf’ of temporary
entities (the vT-markedentities in Figure 2). A similar partition applies to the &t ATT
is a function that maps an entity symbol §hto an .A-labeled tuple oveD, ATT(E) =
(A1 : Dq,..., Ay : Dy). REL is a function that maps a relationship symbol7thto an
U-labeled tuple ove€, REL(R) = (U; : Ey,..., Uy : Ei), andk is thearity of R. CARD
is a function€ x R x U — N x (N U {cco}) denoting cardinality constraints. We denote
with cMIN(E, R,U) andCMAX (E, R, U) the first and second component@rD. In Fig-
ure 2, CARD(TopManager, Manages,man) = (1,1). ISA is a binary relationshipsa C
(€ x &)U (R x R). ISA between relationships is restricted to relationships withsame



PaySlipNumber(Integer)
Salary(Integer)
OvT

Name(String)
O Employees

(]_' n)Jact ProjectCode(String)

| Resp-fors
QO (1, D)prj

org

| AreaManage|| | TopManage
T

man

| OrganizationalUnits |

“ —-DEX — —

| Departments | | InterestGrouq

Figure 2: AnERy diagram

arity. ISA is visualized with a directed arrow, e.dfanager ISA Employee in Figure 2.
DISJ, COVERare binary relations ove’ x &, describing disjointness and covering partitions,
respectively.DisJis visualized with a circled “d” andovER with a double directed arrow,
e.g.Department, InterestGroup are both disjoint and they covetganizationalUnit.
S, T are binary relations ovef x .4 containing, respectively, the snapshot and temporary
attributes of an entity (seg T marked attributes in Figure 2XEY is a function that maps
entity symbols in€ to their key attributesKey (E) = A. Keys are visualized as underlined
attributes. BottDEX andPERare binary relations over x £ describing the dynamic evolution
of entities. DEX andPER are visualized with dotted directed lines labeled vo#Xx or PER,
respectively (e.gAreaManager DEX TopManager).

The model-theoretic semantics associated with&tRg- modeling language adopts the
snapshdt representation of abstract temporal databases and tehepaceptual models [8].
Following this paradigm, the flow of tim& = (7Z,, <), whereZ, is a set of time points (or
chronons) andk is a binary precedence relation @) is assumed to be isomorphic to either
(Z,<) or (N, <). Thus, a temporal database can be regarded as a mappingrfrerpdints
in 7 to standard relational databases, with the same intetimetaf constants and the same
domain.

Definition 3.1 (ERyr Semantics). Let 3 be anERyr schema. Aemporal database state
for the schemas is a tuple B = (7,AB U AB .B®), such that: AB is a nonempty set
disjoint fromAP; AP = Up,p AP, is the set of basic domain values used in the schema
»; -B® is a function such that for eache 7, every domain symbdD; € D, every entity

E € &, every relationshipR € R, and every attributed € A, we have:Df(t) = Agi,
EB® C AB, RB® is a set ofi/-labeled tuples oven\B, and AB®) C AB x AB. Bis a
legal temporal database sté#t# satisfies all integrity constraints expressed in theama. In
particular, the interpretation ofSA, ATT, REL, CARD, DISJ.COVERIS similar to the atemporal
case (see [7, 4]). For the temporal constructs we have:

2The snapshot model represents the same class of temparhhdas as thémestampnodel [12, 13] defined
by adding temporal attributes to a relation [8].



For each snapshot entitif € £, if, e EB®) | then,Vt' € T.ec EB1).

For each temporary entitf € £7, if, ec EB® | then,3¢' £t.eg EB1),

For each snapshot relationshii e RS, if, r € RE®) | then,Vt' € T .r € RB().
For each temporary relationshig e R7, if, r € RBE®)  then,3t' £t.r ¢ RE®).
For each entityE' € £ with a snapshot attributel;, i.e. (E, A;) € s, if,

(e € EBO A (e, a;) € APD) then vt € T.(e, a;) € AP").

For each entityE' € £ with a temporary attributed;, i.e. (E, A;) € T, if,

(e € EB® A (e, a;) € APD) then, 3t # t.(e, a;) & AP,

ForeachE € £, A € A such thalkey (E) = A, then,(E, A;) € s—i.e. a key is a snapshot
attribute—andva € AB #{e € EB® | (¢,a) € ABW} < 1.

For eachEy, E, € £, if By DEX By, if, e € EX" then,3t; > t.e € E5");

For eachEy, E, € &, if By PEREy, if, e € EPY, thent’ > t.e € E5").

4 Reasoning on Temporal Models

Reasoning tasks over a temporal conceptual model includfying whether an entity, re-
lationship, or schema amatisfiable whether asubsumptionrelation exists between entities
or relationships, or checking whether a new schema projehbgically impliedby a given
schema. The model-theoretic semantics associated8Mi, allows us to formally define
these reasoning tasks.

Definition 4.1 (Reasoning infRyr). LetY be anERyr schema,E € £ an entity, and
R € R arelationship. The following are the reasoning tasks ouer

1. FE (R) is satisfiableif there exists a legal temporal database st&tdor > such that
EB®) £ ¢ (RB® £ (), for somet € T

2. FE (R) is liveness satisfiabléd there exists a legal temporal database st&téor 3 such
thatVte 7.3t' > t. EBW) £ (RB(M) £(), i.e. E (R) is satisfiable infinitely often;

3. E (R) is globally satisfiabldf there exists a legal temporal database st&téor > such
that EB(®) £ ¢ (RB® £ (), forall t € T;

4. ¥ is satisfiabldf there exists a legal temporal database stBtéor X that satisfies at least
one entity inX (B is said amodelfor X);

5. E1 (R;) is subsumedby F» (R») in X if every legal temporal database state #0iis also
a legal temporal database state fék 1ISA E5 (R1 ISA Ry);

6. A schema’ is logically implied by a schema& over the same signature if every legal
temporal database state far is also a legal temporal database state o

Based on this formal characterization the following Prdipms proves that reasoning ser-
vices (1-5) relative to entities are mutually reducible aste other. As far as relationships are
concerned, the reasoning services (1-3) can be reducedatogans problems for entities.
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Figure 3: Reductions: (a) From Entity Sat to Schema Sat; (bi)nFSchema Sat to Entity
Liveness Sat; (c) From Entity Liveness Sat to Entity Globatl, $d) From Entity Global Sat
to Entity Sat.

Indeed, we can verify whether a relationshipis satisfiable in> by adding a new entity,
say Ag such that: (g I1SA E, with E an arbitrary entity participating in the relationship,
and (b) Ay, totally participates in the relationship. TheR,is satisfiable (liveness or globally
satisfiable) if and only ifA is satisfiable (liveness or globally satisfiable). As farelation-
ships subsumption is concerned, it can be reduced to neddtiijos satisfiability by extending
ERvyr to express disjoint hierarchies between relationshipstlagwl applying the reduction
proposed by [6] for entities.

Proposition 4.2. There is a mutual reducibility between the reasoning ses/(@-5) iE Ry 7.
Proof. (Sket ch.)

1. Proving the mutual reducibility between satisfiabilitydasubsumption iRy can
be done similarly to [6].

2. Entity satisfiability reduces to schema satisfiability.
An arbitrary entity, £y, is satisfiable w.r.tX iff a new schema&’ is satisfiable.Y is
obtained by adding t& the schema in Figure 3(a), where E+, E» are new entities
such thatVE' € £.F I1sA T, andR is a new binary relationship.

3. Schema satisfiability reduces to entity liveness satidifia
An arbitrary schema&: is satisfiable iff an entity is liveness satisfiable w.r.t. ewn
schema&’’. ¥’ is obtained by adding t& the schema in Figure 3(b), whefe, T, E1, Ey
are new entities an® is a new binary relationship. Furthermoféy | E € £} COVER
To. In particular,X is satisfiable iffT; is liveness satisfiable w.rt’.

4. Entity liveness satisfiability reduces to entity globatisfiability.
An arbitrary entity,Ey, is liveness satisfiable w.rX iff an entity is globally satisfiable
w.r.t. a new schema&’. ¥’ is obtained by adding t& the new entityF; as shown in
Figure 3(c). In particularEy is liveness satisfiable w.r.E iff E; is globally satisfiable
w.r.t. Y.



5. Entity global satisfiability reduces to entity satisflapi
An arbitrary entity,Ey, is globally satisfiable w.r.t2 iff the new entityE; is satisfiable
w.r.t. the new schema’. Y’ is obtained by adding t& the schema in Figure 3(d),
whereF; is new snapshot entity anféd is a new binary relationship. 0O

Finally, we show that all the reasoning problems can be reditie a logical implication
problem. Indeed, checking whether an entityis satisfiable can be reduced to logical im-
plication by choosing~’ = {F 1SA A, E I1sA B,{A, B} pisaC}, with A, B, C arbitrary
entities. ThenF is satisfiable iffS (= X', Given the result of Proposition 4.2, then the rea-
soning services (1-5) for entities are reducible to logiegllication. Furthermore, given two
relationshipsR;, R2, checking for sub-relationship can be reduced to logicallitation by
choosingy’ = {R; ISA Ry}.

5 Reasoning o€ Ry is Undecidable

We now show that reasoning on fdliR 1 is undecidable. The proof is based on a reduction
from the undecidable halting problem for a Turing machintihtoentity satisfiability problem
w.r.t. anERyr schemat. We apply ideas similar to [9] (Sect. 7.5) to show undecilitgbi

of certain products of modal logics. The proof can be dividethe following two stepsi.
Reduction of the halting problem to concept satisfiability.twan ALC¢ KB; 2. Reduction

of concept satisfiability w.r.t. arlLCr KB to entity satisfiability w.r.t. alf Ry schema.

Reasoning onALCk is undecidable

Using a reduction from the halting problem we now prove tleaspning involving atdLC¢
knowledge base is undecidable. In [9] the undecidabilityddICr is proved using: (a) com-
plex axioms—i.e. axioms can be combined using Boolean andahmperators—(b) both
global andlocal axioms—i.e. axioms can be either true at all time or true atestime, re-
spectively. Sinc&€Ryr is able to encode just simple global axioms, we modify theopro
presented in [9].

Proposition 5.1. Concept satisfiability w.r.t. asl LC¢ KB is undecidable.

Proof. (Sket ch. ) A single-tape right-infinite deterministic Turing machiM, is a triple
(A, S, p), where: A is thetape alphabe(b € A stands for blank)S is a finite set ofstates
with initial state, so, andfinal state s;; p is thetransition functionp : (S — {s1}) x A —

S x (AU{L,R}). We construct atdLCr KB, sayKB,, with a concept that is satisfiable
w.r.t. KB, iff the machineM does not halt. We introduce some shortcuts. The implication
C — D, is equivalent to~C' U D. We definenext(C, D) as: C C OTD M -01tO+D.
Finally, discover(C,{Dy,...,D,}) is the disjoint covering betweefi andD; ... D,,. Let

A =AU{£}U(S x A), where£ ¢ Ais a symbol marking the left end of the tape. With
eachr € A’ we introduce a concedt,. We also use concepts, C;, C,. to denote the active
cell, its left and right cells, respectively. The concéfitdenotes the final state. The halting
problem reduces to satisfiability 6f,. Extra concepts’, D1, Ds, D3, will be also usedR is

a global role KB, contains the following axioms:



CoCCeMOTClyyy (1) C:CCUOTG (10)

TC3RT (2 Ci C Ca — VR.Co (11)
next(Cy, D1) 3) Cs CCg —VR.Cy (12)
next (D1, D2) (4) C,CCy—VRC, (13)

Clsoy T D1 (5) Co C (=CiM=CsM=Cr) = VR.Cyy, Ya€e AU{L} (14)
Cisoy TOTC,  (6) discover(S1,{C(s, o) | a € AU{L}}) (15)
next(Cj, Cs) ) discover(C,{C; |z € A'}) (16)
next(Cs, Cr) (8) discover(Cs, {Cis,a) | (s,a) € S x A}) a7
next(Cr, D3) 9) Cs E =51 (18)

with axioms (11-13) for each instructiod\, 3,7) = («/, 3',~'), defined as

E?h <5 ;a]> akﬁi if PE&CLJ; = E ) %>

B s a;),a5,a), if p(s,a;) = (s',L) anda; # £

Olais (5,050, 00) = 1 a3, k>, if ﬁ(s,aj) = (s/,L) anda; = £
(ai, aj,(s';ar)), i p(s,a;) = (s',R)

We can prove thaf; is satisfiable w.r.t KB, iff M has an infinite computation starting
from the empty tape. O

Reducing ALCg concept sat to€ Ry entity sat

We now show how to capture théLCr knowledge bas& B, with anERyr schemaX,,.
The mapping is based on a similar reduction presented irof&dpturingALC axioms. For
each atomic concept and roleKiB ;; we introduce an entity and a relationship, respectively.
To simulate the universal concept, we introduce a snapshot enti§op, that generalizes
all the entities inx,,. Additionally, the various axioms ilKB, are encoded iERyr as
follows:

1. Axioms involvingdiscover are mapped using disjoint and covering hierarchies.

2. Axioms of the formC' C D, with C, D atomic concepts are encoded@ssA D.

3. For axioms of the forn' = —D we construct the hierarchy in Figure 4(a).

4. For axioms of the fornrC C D, LI... U D,, we construct the hierarchy in Figure 4(b).

5. Axioms of the formC C VR.D are mapped together with the axiom C 3R.T by
introducing a new sub-relationshif, and considering? as a functional rofé Figure 4(c)
shows the mapping wherR is a snapshot relationship to capture the fact thas a global
role inKB,.

6. For each axiom of the forld’ C O™ D (C C ¢+ D) we use a persistency (respectively,
dynamic extension) constrainti PER D (respectively(C DEX D).

7. Axioms of the formnext(C, D) are mapped by using the dynamic extension constraint to
capture thaC' C T D. To capture thal' C =70+ D we rewrite it asC' © OTOT =D,
which, in turn, is encoded by the following axiom&: C OFtC;; C, C OFtCy; Cy T —D.
Figure 4(d) shows the diagram that mapst axioms.

3ConsideringR as a functional role does not change #h&Cr undecidability proof.



Figure 4: Encoding axioms: (& C -D; (b)C C D; U ... U Dy,; (c) C C VR.D and
T C3R.T; (d)next(C, D).

The above reductions are enough to capture all axior&&n,;. Indeed, axioms (11-13) have
the form:C' C —-C; UVR.Cy, while axioms (16) have the fornt’, C C; U Cs U C. UVR.C,,.
We are now able to prove the main result of this paper.

Theorem 5.2. Reasoning i€ Ry using persistency and dynamic constructs is undecidable.

Proof. Proving that the above reduction froKB,,; to X, is true can be easily done by
checking the semantic equivalence between e&€tir axiom and its encoding (for a similar
proof see [6]). Then, the concef, is satisfiable w.r.t KB, iff the entity Cj is satisfiable
w.r.t. 3. Thus, because of Proposition 5.1, the halting problem earduced to reasoning
inERvyr. O
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